日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,棱錐的地面是矩形, 平面,,.

          (1)求證: 平面;

          (2)求二面角的大小;

          (3)求點(diǎn)到平面的距離.

          【答案】(1)見解析;(2);(3).

          【解析】

          (1)先證明為正方形,可得,平面,平面,可得,利用線面垂直的判定定理可得結(jié)果;(2)軸建立空間直角坐標(biāo)系,根據(jù)向量垂直數(shù)量積為零,列方程組求出平面的法向量結(jié)合為平面的法向量,利用空間向量夾角余弦公式求出兩個(gè)向量的夾角余弦,進(jìn)而轉(zhuǎn)化為二面角的平面角即可;(3)求出平面的法向量,再求出平面的斜線所在的向量,然后求出在法向量上的射影即可得到點(diǎn)到平面的距離.

          (1)解法一:在中, ,,

          ,∴為正方形,

          因此,

          平面,平面,

          .又∵,

          平面.

          解法二:以軸建立如圖所示的空間直角坐標(biāo)系,

          ,,,

          中, ,,

          ,∴,,

          ,,.

          ,,

          ,.又,

          平面.

          (2)解法一:由平面,

          在平面上的射影.

          ,∴,

          為二面角的平面角.

          又∵,∴.

          解法二:由1題得,.

          設(shè)平面的法向量為,則,,

          ,∴,

          故平面的法向量可取為,

          平面,

          為平面的法向量.

          設(shè)二面角的大小為,

          依題意可得,

          .

          (3)解法一:∵,

          ,

          設(shè)到平面的距離為,

          ,

          ,

          .

          解法二:由1題得,,

          設(shè)平面的法向量為,

          ,,

          ,

          .

          故平面的法向量可取為.

          ,

          到平面的距離為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,D、E分別是△ABC的邊BC的三等分點(diǎn),設(shè) =m, =n,∠BAC=

          (1)用 、 分別表示 , ;
          (2)若 =15,| |=3 ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在體積為12π的圓柱中,AB,CD分別是上、下底面兩條不平行的直徑,則三棱錐A﹣BCD的體積最大值等于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)在區(qū)間上有最大值4 和最小值1,設(shè).

          (1)求的值;

          (2)若不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

          (3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線x2=2py和 ﹣y2=1的公切線PQ(P是PQ與拋物線的切點(diǎn),未必是PQ與雙曲線的切點(diǎn))與拋物線的準(zhǔn)線交于Q,F(xiàn)(0, ),若 |PQ|= |PF|,則拋物線的方程是(
          A.x2=4y
          B.x2=2 y
          C.x2=6y
          D.x2=2 y

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某大型水上樂園內(nèi)有一塊矩形場地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個(gè)半圓形水上主題樂園, 都建有圍墻,游客只能從線段處進(jìn)出該主題樂園.為了進(jìn)一步提高經(jīng)濟(jì)效益,水上樂園管理部門決定沿著修建不銹鋼護(hù)欄,沿著線段修建該主題樂園大門并設(shè)置檢票口,其中分別為上的動(dòng)點(diǎn), ,且線段與線段在圓心連線的同側(cè).已知弧線部分的修建費(fèi)用為元/米,直線部門的平均修建費(fèi)用為元/米.

          (1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?

          (2)試確定點(diǎn)的位置,使得修建費(fèi)用最低.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.

          1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;

          (2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過點(diǎn)E作球O的截面,則截面面積的最小值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
          (1)解不等式f(x)<g(x);
          (2)若2f(x)+g(x)>ax對(duì)任意的實(shí)數(shù)x恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案