日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x,則稱點(diǎn)(x,f(x))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,求
          (1)函數(shù)f(x)=x3-3x2+3x對稱中心為   
          (2)若函數(shù)g(x)=x3-x2+3x-+,則g()+g()+g()+g()+…+g()=   
          【答案】分析:(1)根據(jù)函數(shù)f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函數(shù)f(x)=x3-3x2+3x對稱中心.
          (2)令h(x)=x3-x2+3x-,m(x)=,則g(x)=h(x)+m(x).利用對稱性求得h()+h()+h()+h()+…+h()=2010,求得m()+m()+m()+m()+…+m()=0,從而求得g(x)=h(x)+m(x)的值.
          解答:解:(1)∵函數(shù)f(x)=x3-3x2+3x,∴f′(x)=3x2 -6x+3,∴f″(x)=6x-6.
          令 f″(x)=6x-6=0,解得 x=1,且f(1)=1,故函數(shù)f(x)=x3-3x2+3x對稱中心為(1,1),
          故答案為 (1,1).
          (2)若函數(shù)g(x)=x3-x2+3x-+=x3-x2+3x-+,令h(x)=x3-x2+3x-,m(x)=,則g(x)=h(x)+m(x).
           則h′(x)=x2-x+3,h″(x)=2x-1,令h″(x)=0,可得x=,故h(x)的對稱中心為(,1).
          設(shè)點(diǎn)p(x,y)為曲線上任意一點(diǎn),則點(diǎn)P關(guān)于(,1)的對稱點(diǎn)P′(1-x,2-y)也在曲線上,
          ∴h(1-x)=2-y0 ,∴h(x)+h(1-x)=y+(2-y)=2.
          ∴h()+h()+h()+h()+…+h(
          =[h()+h()]+[h()+h()]+[h()+h()]+…+[h()+h()]=1005×2=2010.
          由于函數(shù)m(x)=的對稱中心為(,0),可得m(x)+m(1-x)=0.
          ∴m()+m()+m()+m()+…+m(
          =[m()+m()]+[m()+m()]+[m()+m()]+…+[m()+m()]=1005×0=0.
          ∴g()+g()+g()+g()+…+g()=h()+h()+h()+h()+…+h(
          +m()+m()+m()+m()+…+m(
          =2010+0=2010,
          故答案為2010.
          點(diǎn)評:本小題主要考查函數(shù)與導(dǎo)數(shù)等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查化簡計(jì)算能力,求函數(shù)的值以及函數(shù)的對稱性的應(yīng)用,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
          定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
          定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
          己知f(x)=x3-3x2+2x+2,請回答下列問題:
          (1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
           
          ;
          (2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•昌平區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.給定函數(shù)f(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          ,請你根據(jù)上面探究結(jié)果,解答以下問題
          (1)函數(shù)f(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          的對稱中心為
          1
          2
          ,1)
          1
          2
          ,1)
          ;
          (2)計(jì)算f(
          1
          2013
          )+f(
          2
          2013
          )+f(
          3
          2013
          )
          +…+f(
          2012
          2013
          )=
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•房山區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且拐點(diǎn)就是對稱中心.若f(x)=
          1
          3
          x3-
          1
          2
          x2+
          1
          6
          x+1
          ,則該函數(shù)的對稱中心為
          (
          1
          2
          ,1)
          (
          1
          2
          ,1)
          ,計(jì)算f(
          1
          2013
          )+f(
          2
          2013
          )+f(
          3
          2013
          )+…+f(
          2012
          2013
          )
          =
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對稱中心”,且‘拐點(diǎn)’就是對稱中心.請你將這一發(fā)現(xiàn)作為條件.
          (1).函數(shù)f(x)=x3-3x2+3x的對稱中心為
          (1,2)
          (1,2)

          (2).若函數(shù)g(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          +
          1
          x-
          1
          2
          ,則g(
          1
          2013
          )+g(
          2
          2013
          )+g(
          3
          2013
          )+…+g(
          2012
          2013
          )
          =
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•安慶三模)對于三次函數(shù)f(x)-ax3+bx2+cx+d(a≠0),給出定義:設(shè)ft(x)是函數(shù)y=f(x)的導(dǎo)數(shù),ftt(x)是函數(shù)ft的導(dǎo)數(shù),若方程ftt(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)一元三次函數(shù)都有“拐點(diǎn)”;且該“拐點(diǎn)”也為該函數(shù)的對稱中心.若f(x)=x3-
          3
          2
          x2+
          1
          2
          x+1,則f(
          1
          2014
          )+f(
          2
          2014
          )+…+f(
          2013
          2014
          )=( 。

          查看答案和解析>>

          同步練習(xí)冊答案