日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知ABCD是矩形,邊長AB=3,BC=4,正方形ACEF邊長為5,平面ACEF⊥平面ABCD,則多面體ABCDEF的外接球的表面積
          50π
          50π
          分析:先由題意畫出圖形,再利用截面圓的性質(zhì)找出球心,進(jìn)而求出半徑即可.
          解答:解:由題意作出圖形:
          分別連接矩形ABCD和正方形ACEF的對角線,分別相較于點O1、O,由球的截面圓的性質(zhì)可知:球心必在過O1與平面ABCD垂直的直線上和在過點O且平面ACEF垂直的直線上,因此球心必為二直線 的交點即點O.(也可以證明得O到所有頂點的距離都相等).
          ∴球的半徑為R=
          52+52
          2
          =
          5
          2
          2
          ,
          ∴多面體ABCDEF的外接球的表面積S=4π×(
          5
          2
          2
          )2
          =50π.
          故答案為50π.
          點評:熟練掌握球的截面圓的性質(zhì)是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點,且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
          (Ⅰ)求證:DF⊥平面PAF;
          (Ⅱ)在棱PA上找一點G,使EG∥平面PED,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           如圖,已知ABCD是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點,PA=2,PD=AB,且平面MND⊥平面PCD.
          (1)求證:MN⊥AB;
          (2)求二面角P-CD-A的大小;
          (3)求三棱錐D-AMN的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知ABCD是矩形,M、N分別是PC、PD上的點,MN⊥PC,且PA⊥平面ABCD,AN⊥PD,求證:AM⊥PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•內(nèi)江二模)已知ABCD是矩形,AD=4,AB=2,E、F分別是AB、BC 的中點,PA丄面ABCD.
          (1)求證:PF丄DF;
          (2)若PD與面ABCD所成角為300在PA上找一點 G,使EG∥面PFD,并求出AG的長.

          查看答案和解析>>

          同步練習(xí)冊答案