日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點(diǎn),且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.
          分析:要證明CE⊥平面ADE,需要證明CE垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDE⊥平面ABCD,而E是以CD為直徑的半圓周上一點(diǎn),能夠得到CE⊥DE,由面面垂直的性質(zhì)即可證明.
          解答:證明:平面ABCD⊥平面CDE,ABCD為矩形,所以AD⊥平面CDE,
          因?yàn)辄c(diǎn)E在直徑為CD的半圓上,所以CE⊥ED,
          所以CE⊥平面ADE.
          點(diǎn)評(píng):本題考查線面垂直的證明,證明直線垂直于平面有兩種常用方法:判定定理或者使用面面垂直的性質(zhì)定理,要根據(jù)題目中給定的條件恰當(dāng)選擇.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知ABCD是邊長(zhǎng)為a的正方形,E,F(xiàn)分別是AB,AD的中點(diǎn),CG⊥面ABCD,CG=a.
          (1)求證:BD∥EFG;
          (2)求點(diǎn)B到面GEF的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知ABCD是底角為30°的等腰梯形,AD=2
          3
          ,BC=4
          3
          ,取兩腰中點(diǎn)M、N分別交對(duì)角線BD、AC于G、H,則
          AG
          AC
          =(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知ABCD是邊長(zhǎng)為1的正方形,AF⊥平面ABCD,CE∥AF,CE=λAF(λ>1).
          (Ⅰ)證明:BD⊥EF;
          (Ⅱ)若AF=1,且直線BE與平面ACE所成角的正弦值為
          3
          2
          10
          ,求λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知ABCD是矩形,PD⊥平面ABCD,PB=2,PB與平面ABCD所成的角為30°,PB與平面PCD所成的角為45°,求:
          (1)PB與CD所成角的大小;
          (2)二面角C-PB-D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
          (Ⅰ)求證:平面AEC⊥平面AFC;
          (Ⅱ)求直線EC與平面BCF所成的角;
          (Ⅲ)問(wèn)在EF上是否存在一點(diǎn)M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點(diǎn)的位置;若不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案