日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          高為的四棱錐S-ABCD的底面是邊長為1的正方形,點S,A,B,C,D均在半徑為1的同一球面上,則底面AB-CD的中心與頂點S之間的距離為
          [     ]
          A.
          B.
          C.1
          D.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網四棱錐S-ABCD中,底面ABCD為矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B為60°,且AB=SC=4.
          (1)求證:平面SAB⊥平面ABCD;
          (2)求三棱錐C-ASD的高(即以△SAD為底的三棱錐的高).

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (文做理不做)已知:正四棱錐S-ABCD的高為
          3
          ,斜高為2,設E為AB中點,F為SC中點,M為CD邊上的點.
          (1)求證:EF∥平面SAD;
          (2)試確定點M的位置,使得平面EFM⊥底面ABCD.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2013•保定一模)四棱錐S-ABCD中,四邊形ABCD為矩形,M為AB中點,且△SAB為等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.
          (1)求證:平面SBD⊥平面SMC
          (2)設四棱錐S-ABCD外接球的球心為H,求棱錐H-MSC的高;
          (3)求平面SAD與平面SMC所成的二面角的正弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2013•保定一模)四棱錐S-ABCD中,四邊形ABCD為矩形,M為AB中點,且△SAB為等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.
          (1)求證:平面SBD⊥平面SMC
          (2)設四棱錐S-ABCD外接球的球心為H,求棱錐H-MSC的高.

          查看答案和解析>>

          同步練習冊答案