日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),,的導函數(shù).

          1)討論的單調(diào)性,設(shè)的最小值為,并求證:

          2)若有三個零點,求的取值范圍.

          【答案】1)見解析(2

          【解析】

          1)先對求導,設(shè),再對求導,即可判斷的單調(diào)性且可求得的最小值,設(shè),利用導函數(shù)求得的最小值,即可求解;

          2)由(1,,,上單調(diào)遞增,不可能有3個零點,,由(1)可知的單調(diào)性,,,由零點存在性定理可得,存在,使得,存在,使得,即可判斷的單調(diào)性,再利用零點存在性定理可得存在,使得,若滿足題意,則使得,進而求解即可.

          1,

          ,

          所以,

          ,解得,

          所以當,,所以單調(diào)遞減,即單調(diào)遞減;

          ,,所以單調(diào)遞增,即單調(diào)遞增;

          所以的最小值,

          ,

          ,

          ,解得,

          所以單調(diào)遞增;

          單調(diào)遞減,

          所及,命題得證.

          2)由(1)若的最小值,

          時,,此時上單調(diào)遞增,

          因為上單調(diào)遞增,不可能有三個零點,

          所以,此時,

          又由(1)可知,單調(diào)遞減;

          ,單調(diào)遞增,其中,

          ,,所以存在,使得,

          存在,使得,

          所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          其中在,有,存在,使得,

          在區(qū)間上要有兩個零點,必須①,

          其中使得成立,即②,代入①式,

          ,解得,

          由②得,令,,

          所以時單調(diào)遞增,所以,

          所以.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知定義在R上的奇函數(shù)fx)=exaex+2sinx滿足,則zxlny的最小值是(

          A.ln6B.2C.ln6D.2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,直線交橢圓兩點,為坐標原點.

          1)若直線過橢圓的右焦點,求的面積;

          2)若,試問橢圓上是否存在點,使得四邊形為平行四邊形?若存在,求出的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an}為正項等比數(shù)列,a11,數(shù)列{bn}滿足b23a1b1+a2b2+a3b3+…+anbn3+2n32n

          1)求an;

          2)求的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓.

          (Ⅰ)若的一個焦點為,且點上,求橢圓的方程;

          (Ⅱ)已知上有兩個動點,為坐標原點,且,求線段的最小值(用表示).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),若方程7個不同的實數(shù)解,的取值范圍(

          A.(2,6)B.(6,9)C.(2,12)D.(4,13)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知是拋物線的焦點,點是拋物線上一點,且,直線過定點(4,0),與拋物線交于兩點,點在直線上的射影是.

          1)求的值;

          2)若,且,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率為,左右頂點分別為,右焦點為為橢圓上異于,的動點,且面積的最大值為.

          1)求橢圓的方程;

          2)設(shè)直線軸交于點,過點的平行線交軸與點,試探究是否存在定點,使得以為直徑的圓恒過定點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)當時,判斷上的單調(diào)性并加以證明;

          2)若,,求的取值范圍.

          查看答案和解析>>

          同步練習冊答案