日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某建筑公司用8000萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計(jì)得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費(fèi)用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費(fèi)最小值是多少?
          (注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=數(shù)學(xué)公式

          解:設(shè)樓房每平方米的平均綜合費(fèi)為f(x)元,依題意得(x≥12,x∈N)
          【方法一】因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/386685.png' />;
          當(dāng)且僅當(dāng)上式取”=”;
          因此,當(dāng)x=20時(shí),f(x)取得最小值5000(元).
          所以,為了使樓房每平方米的平均綜合費(fèi)最少,該樓房應(yīng)建為20層,每平方米的平均綜合費(fèi)最小值為5000元
          【方法二】因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/386687.png' />;
          令f(x)=0(其中x>0),得x=20;當(dāng)0<x<20時(shí),f(x)<0,f(x)是減函數(shù);當(dāng)x>20時(shí),f′(x)>0,f(x)是增函數(shù);所以,當(dāng)且僅當(dāng)x=20時(shí),f(x)有最小值,為f(20)=5000;即為了使樓房每平方米的平均綜合費(fèi)最少,該樓房應(yīng)建為20層,每平方米的平均綜合費(fèi)最小值為5000元.
          分析:【方法一】:設(shè)樓房每平方米的平均綜合費(fèi)為f(x)元,則平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,由平均建筑費(fèi)用Q(x)=3000+50x,平均購(gòu)地費(fèi)用==;代入即得f(x),(其中x≥12,x∈N); 因?yàn)閒(x)=50x++3000,可以應(yīng)用基本不等式法,即a+b≥(a>0,b>0)求得f(x)的最小值及對(duì)應(yīng)的x的值;
          【方法二】:同方法一可得因?yàn)閒(x)=50x++3000,用求導(dǎo)法,對(duì)f(x)求導(dǎo),令f(x)=0,從而得x及f(x)的最小值.
          點(diǎn)評(píng):本題考查了求函數(shù)最值模型的應(yīng)用,求函數(shù)最值時(shí),有兩種基本方法:(1)基本不等式法,(2)求導(dǎo)法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某建筑公司用8000萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計(jì)得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費(fèi)用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費(fèi)最小值是多少?
          (注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=
          購(gòu)地總費(fèi)用建筑總面積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二上學(xué)期第二次月考文科數(shù)學(xué)試卷 題型:解答題

          某建筑公司用8000萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少12層、每層4000平方米的樓房。經(jīng)初步估計(jì)得知,如果將樓房建為x(x12)層,則每平方米的平均建筑費(fèi)用為Q(x)=3000+50x(單位:元),為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費(fèi)最小值是多少?

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某建筑公司用8000萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少12層、每層4000平方米的樓房。經(jīng)初步估計(jì)得知,如果將樓房建為x(x12)層,則每平方米的平均建筑費(fèi)用為Q(x)=3000+50x(單位:元),為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費(fèi)最小值是多少?

          (注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分12分)

          某建筑公司用8000萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少12層、每層4000平方米的樓房。經(jīng)初步估計(jì)得知,如果將樓房建為x(x12)層,則每平方米的平均建筑費(fèi)用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費(fèi)最小值是多少?

          (注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省徐州市運(yùn)河中學(xué)高三摸底迎考練習(xí)(二)(解析版) 題型:解答題

          某建筑公司用8000萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計(jì)得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費(fèi)用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費(fèi)最小值是多少?
          (注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=

          查看答案和解析>>

          同步練習(xí)冊(cè)答案