日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且,過棱的中點(diǎn),作于點(diǎn).

          1)證明:平面;

          2)若面與面所成二面角的大小為,求與面所成角的正弦值.

          【答案】1)見解析(2

          【解析】

          1)連接,則的中點(diǎn),連接,證明,平面即得證;(2)如圖以為原點(diǎn),方向分別為軸,軸,軸正半軸建立空間直角坐標(biāo)系.設(shè),根據(jù)面與面所成二面角的大小為求出,再求出與面所成角的正弦值.

          1)證明:連接,則的中點(diǎn),連接

          的中位線,所以,

          有因?yàn)?/span>

          所以平面.

          2)如圖以為原點(diǎn),方向分別為軸,軸,軸正半軸建立空間直角坐標(biāo)系.設(shè),則

          ,,,

          ,設(shè),則,

          ,即,解得

          設(shè)是平面的一個法向量,則

          ,方程的一組解為 ,

          顯然是面的一個法向量,依題意有

          ,得,

          結(jié)合①式得 .

          因?yàn)?/span>底面,所以與面所成的角,

          所以 .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知中, ,點(diǎn)平面,點(diǎn)在平面的同側(cè),且在平面上的射影分別為,.

          (Ⅰ)求證:平面平面;

          (Ⅱ)若中點(diǎn),求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)判斷直線與曲線的位置關(guān)系;

          (2)過直線上的點(diǎn)作曲線的切線,求切線長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中無理數(shù).

          (Ⅰ)若函數(shù)有兩個極值點(diǎn),的取值范圍

          (Ⅱ)若函數(shù)的極值點(diǎn)有三個,最小的記為最大的記為,的最大值為,的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,直線l,P為直線l上一點(diǎn),且點(diǎn)P在極軸上方OP為一邊作正三角形逆時針方向,且面積為

          Q點(diǎn)的極坐標(biāo);

          外接圓的極坐標(biāo)方程,并判斷直線l外接圓的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).

          1)證明:當(dāng)取得最小值時,橢圓的離心率為.

          2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在,,,,(單位:克)中,其頻率分布直方圖如圖所示.

          1)按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;

          2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

          A. 所有蜜柚均以40/千克收購;

          B. 低于2250克的蜜柚以60/個收購,高于或等于2250克的以80/個收購.

          請你通過計(jì)算為該村選擇收益最好的方案.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于兩點(diǎn).

          (1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

          (2)若點(diǎn)的極坐標(biāo)為,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.

          (1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;

          (2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案