日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】底面是正多邊形,頂點在底面的射影是底面中心的棱錐叫正棱錐.已知同底的兩個正三棱錐內(nèi)接于同一個球.已知兩個正三棱錐的底面邊長為a,球的半徑為R.設兩個正三棱錐的側面與底面所成的角分別為α、β,則tan(α+β)的值是

          【答案】
          【解析】解:由題意畫出圖象如下圖:

          由圖得,右側為該球過SA和球心的截面,由于三角形ABC為正三角形,
          所以D為BC中點,且AD⊥BC,SD⊥BC,MD⊥BC,
          故∠SDA=α,∠MDA=β.
          設SM∩平面ABC=P,則點P為三角形ABC的重心,且點P在AD上,SM=2R,AB=a,
          ,
          因此
          =
          所以答案是:
          【考點精析】根據(jù)題目的已知條件,利用兩角和與差的正切公式和球內(nèi)接多面體的相關知識可以得到問題的答案,需要掌握兩角和與差的正切公式:;球的內(nèi)接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中, 平面.

          (1)求證: 平面;

          (2)若為線段的中點,且過三點平面與線段交于點,確定的位置,說明理由;

          并求三棱錐的高.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,多面體OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC兩兩垂直,則下列說法正確的是(
          A.直線OB∥平面ACD
          B.球面經(jīng)過點A,B,C,D四點的球的直徑是
          C.直線AD與OB所成角是45°
          D.二面角A﹣OC﹣D等于30°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<π)圖象的最高點D的坐標為 ,與點D相鄰的最低點坐標為 . (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求滿足f(x)=1的實數(shù)x的集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設四棱錐P﹣ABCD的底面不是平行四邊形,用平面 α去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面α(

          A.不存在
          B.只有1個
          C.恰有4個
          D.有無數(shù)多個

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABB1A1=n,則m、n所成角的正弦值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
          (1)求數(shù)列{an}的通項公式;
          (2)設Sn為數(shù)列{an}的前n項和,bn= ,求數(shù)列{bn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD ,M為棱PB的中點. (Ⅰ)證明:DM⊥平面PBC;
          (Ⅱ)求二面角A﹣DM﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖1,在平行四邊形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分別為AB,A1B1的中點,現(xiàn)把平行四邊形ABB1A1沿CC1折起如圖2所示,連接B1C,B1A,B1A1
          (1)求證:AB1⊥CC1
          (2)若AB1= ,求二面角C﹣AB1﹣A1的余弦值.

          查看答案和解析>>

          同步練習冊答案