日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在平行四邊形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分別為AB,A1B1的中點(diǎn),現(xiàn)把平行四邊形ABB1A1沿CC1折起如圖2所示,連接B1C,B1A,B1A1
          (1)求證:AB1⊥CC1
          (2)若AB1= ,求二面角C﹣AB1﹣A1的余弦值.

          【答案】
          (1)證明:取CC1的中點(diǎn)O,連接OA,OB1,AC1

          ∵在平行四邊形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分別為AB,A1B1的中點(diǎn),

          ∴△ACC1,△B1CC1,為正三角形,

          則AO⊥CC1,OB1⊥C1C,又∵AO∩OB1=O,

          ∴C1C⊥平面OAB1

          ∵AB1平面OAB1

          ∴AB1⊥CC1


          (2)解:∵∠ABB1=60°,AB=4,AA1=2,C,C1分別為AB,A1B1的中點(diǎn),

          ∴AC=2,OA= ,OB1=

          若AB1= ,

          則OA2+OB12=AB12,

          則三角形AOB1為直角三角形,

          則AO⊥OB1,

          以O(shè)為原點(diǎn),以0C,0B1,OA為x,y,z軸建立空間直角坐標(biāo)系,

          則C(1,0,0),B1(0, ,0),C1(﹣1,0,0),A(0,0, ),

          =(﹣2,0,0),

          = =(﹣2,0,0), =(0, ,﹣ ), =(﹣1,0,﹣ ),

          設(shè)平面AB1C的法向量為 =(x,y,z),

          令z=1,則y=1,x=﹣ ,

          =(﹣ ,1,1),

          設(shè)平面A1B1A的法向量為 =(x,y,z),則 ,

          令z=1,則x=0,y=1,即 =(0,1,1),

          則cos< , >= = =

          由于二面角C﹣AB1﹣A1是鈍二面角,

          ∴二面角C﹣AB1﹣A1的余弦值是﹣


          【解析】(1)根據(jù)線面垂直的性質(zhì)定理,證明C1C⊥平面OAB1;(2)建立空間坐標(biāo)系,利用向量法即可求二面角C﹣AB1﹣A1B的余弦值.
          【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】底面是正多邊形,頂點(diǎn)在底面的射影是底面中心的棱錐叫正棱錐.已知同底的兩個(gè)正三棱錐內(nèi)接于同一個(gè)球.已知兩個(gè)正三棱錐的底面邊長為a,球的半徑為R.設(shè)兩個(gè)正三棱錐的側(cè)面與底面所成的角分別為α、β,則tan(α+β)的值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)A(0,﹣2),橢圓E: + =1(a>0,b>0)的離心率為 ,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為 ,O是坐標(biāo)原點(diǎn).
          (1)求E的方程;
          (2)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 =(﹣2,4), =(﹣1,﹣2).
          (1)求 , 的夾角的余弦值;
          (2)若向量 ﹣λ 與2 + 垂直,求λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,已知△A′DE(A′平面ABC)是△ADE繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,有下列命題: ①平面A′FG⊥平面ABC;
          ②BC∥平面A′DE;
          ③三棱錐A′﹣DEF的體積最大值為 a3;
          ④動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上;
          ⑤二面角A′﹣DE﹣F大小的范圍是[0, ].
          其中正確的命題是(寫出所有正確命題的編號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          )當(dāng)為自然對數(shù)的底數(shù))時(shí),求的極小值;

          Ⅱ)若函數(shù)存在唯一零點(diǎn),求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在等差數(shù)列{an}中,a2+a7=﹣23,a3+a8=﹣29. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為c的等比數(shù)列,求{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題中錯(cuò)誤的個(gè)數(shù)為:( )
          ①y= 的圖象關(guān)于(0,0)對稱;
          ②y=x3+x+1的圖象關(guān)于(0,1)對稱;
          ③y= 的圖象關(guān)于直線x=0對稱;
          ④y=sinx+cosx的圖象關(guān)于直線x= 對稱.
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 ,
          (Ⅰ)若 , 共線,求x的值;
          (Ⅱ)若 ,求x的值;
          (Ⅲ)當(dāng)x=2時(shí),求 夾角θ的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案