【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設天燃氣管道.已知小區(qū)某處三幢房屋分別位于扇形的三個頂點上,點
是弧
的中點,現(xiàn)欲在線段
上找一處開挖工作坑
(不與點
,
重合),為鋪設三條地下天燃氣管線
,
,
,已知
米,
,記
,該三條地下天燃氣管線的總長度為
米.
(1)將表示成
的函數(shù),并寫出
的范圍;
(2)請確定工作坑的位置,使此處地下天燃氣管線的總長度最小,并求出總長度的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓具有以下性質(zhì):設A,B是圓C:上關于原點對稱的兩點,點P是圓上的任意一點.若直線PA,PB的斜率都存在并分別記為
,
,則
=﹣1,是與點P的位置無關的定值.
(1)試類比圓的上述性質(zhì),寫出橢圓的一個類似性質(zhì),并加以證明;
(2)如圖,若橢圓M的標準方程為,點P在橢圓M上且位于第一象限,點A,B分別為橢圓長軸的兩個端點,過點A,B分別作
⊥PA,
⊥PB,直線
,
交于點C,直線
與橢圓M的另一交點為Q,且
,求
的取值范圍(可直接使用(1)中證明的結論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)藥開發(fā)公司實驗室有瓶溶液,其中
瓶中有細菌
,現(xiàn)需要把含有細菌
的溶液檢驗出來,有如下兩種方案:
方案一:逐瓶檢驗,則需檢驗次;
方案二:混合檢驗,將瓶溶液分別取樣,混合在一起檢驗,若檢驗結果不含有細菌
,則
瓶溶液全部不含有細菌
;若檢驗結果含有細菌
,就要對這
瓶溶液再逐瓶檢驗,此時檢驗次數(shù)總共為
.
(1)假設,采用方案一,求恰好檢驗3次就能確定哪兩瓶溶液含有細菌
的概率;
(2)現(xiàn)對瓶溶液進行檢驗,已知每瓶溶液含有細菌
的概率均為
.
若采用方案一.需檢驗的總次數(shù)為,若采用方案二.需檢驗的總次數(shù)為
.
(i)若與
的期望相等.試求
關于
的函數(shù)解析式
;
(ii)若,且采用方案二總次數(shù)的期望小于采用方案一總次數(shù)的期望.求
的最大值.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)分別求的值:
(2)討論的解的個數(shù):
(3)若對任意給定的,都存在唯一的
,滿足
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某大學學生在某天上網(wǎng)的時間,隨機對100名男生和100名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結果:
(1)若該大學共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(2)完成聯(lián)表,并回答能否有90%的把握認為“大學生上網(wǎng)時間與性別有關”.
附:,其中n=a+b+c+d為樣本容量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx-ax)有兩個極值點,則實數(shù)a的取值范圍是( )
A. (-∞,0) B. C. (0,1) D. (0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,過原點
且斜率為1的直線
交橢圓
于
兩點,四邊形
的周長與面積分別為8與
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線交橢圓
于
兩點,且
,求證:
到直線
的距離為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形
是邊長為2的菱形,
,
平面
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若與底面
所成角的正切值為2,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是圓O的直徑,點C是圓O上異于A,B的點,直線
平面
,E,F分別是
,
的中點.
(1)記平面與平面
的交線為l,試判斷直線l與平面
的位置關系,并加以證明;
(2)設,求二面角
大小的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com