日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

          (Ⅰ)證明: ;

          (Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

          【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .

          【解析】試題分析】(I)的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

          試題解析】

          證明:(Ⅰ)取的中點(diǎn)為,連接,

          為等邊三角形,∴.

          底面中,可得四邊形為矩形,∴,

          ,∴平面,

          平面,∴.

          ,所以.

          (Ⅱ)由面,

          平面,所以為棱錐的高,

          ,知

          ,

          .

          由(Ⅰ)知,∴.

          .

          ,可知平面,∴,

          因此.

          ,,

          的中點(diǎn),連結(jié),則,

          .

          所以棱錐的側(cè)面積為.

          型】解答
          結(jié)束】
          20

          【題目】已知圓經(jīng)過(guò)橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn) , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

          (Ⅰ)求橢圓的方程;

          (Ⅱ)證明:直線過(guò)定點(diǎn).

          【答案】(Ⅰ).(Ⅱ)直線過(guò)定點(diǎn).

          【解析】試題分析】(I)根據(jù)圓的半徑和已知 ,,由此求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,寫出的斜率并相加,由此求得直線過(guò)定點(diǎn).

          試題解析】

          (Ⅰ)圓軸交點(diǎn)即為橢圓的焦點(diǎn),圓軸交點(diǎn)即為橢圓的上下兩頂點(diǎn),所以, .從而,

          因此橢圓的方程為: .

          (Ⅱ)設(shè)直線的方程為.

          ,消去.

          設(shè), ,則, .

          直線的斜率

          直線的斜率 .

          .

          的平分線在軸上,得.又因?yàn)?/span>,所以,

          所以.

          因此,直線過(guò)定點(diǎn).

          [點(diǎn)睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長(zhǎng)、弦中點(diǎn)問(wèn)題.(3)軌跡問(wèn)題.(4)定值、最值及參數(shù)范圍問(wèn)題.(5)存在性問(wèn)題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一同學(xué)在電腦中打出若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個(gè)圈中的●的個(gè)數(shù)是 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開(kāi)帷幕.為了了解喜愛(ài)足球運(yùn)動(dòng)是否與性別有關(guān),某體育臺(tái)隨機(jī)抽取100名觀眾進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表.

          (1)將列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜愛(ài)足球運(yùn)動(dòng)與性別有關(guān)?

          (2)在不喜愛(ài)足球運(yùn)動(dòng)的觀眾中,按性別分別用分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人參加一臺(tái)訪談節(jié)目,求這2人至少有一位男性的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切錢EP交CB 的延長(zhǎng)線于P,己知∠PAB=25°.

          (1)若BC是⊙O的直徑,求∠D的大;
          (2)若∠DAE=25°,求證:DA2=DCBP.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】把三盆不同的蘭花和4盆不同的玫瑰花擺放在右圖圖案中的1,2,3,4,5,6,7所示的位置上,其中三盆蘭花不能放在一條直線上,則不同的擺放方法為(

          A.2680種
          B.4320種
          C.4920種
          D.5140種

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.

          優(yōu)秀

          非優(yōu)秀

          總計(jì)

          甲班

          10

          乙班

          30

          總計(jì)

          105

          已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.

          (1)請(qǐng)完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)

          (2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績(jī)與班級(jí)有關(guān)系”?

          參考公式:

          P(K2k0)

          0.10

          0.05

          0.025

          0.010

          k0

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用紅、黃、藍(lán)、白、黑五種顏色涂在如圖所示的四個(gè)區(qū)域內(nèi),每個(gè)區(qū)域涂一種顏色,相鄰兩個(gè)區(qū)域涂不同的顏色,五種顏色可以反復(fù)使用,共有___________種不同的涂色方法?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
          (1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
          (2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個(gè),且落在區(qū)間[0,1),(1,2]內(nèi)各一個(gè),求a﹣b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】的展開(kāi)式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列

          1的值;

          2此展開(kāi)式中是否有常數(shù)項(xiàng),為什么?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案