【題目】已知 是拋物線
的焦點(diǎn),點(diǎn)
在該拋物線上且位于
軸的兩側(cè),
(其中
為坐標(biāo)原點(diǎn)),則
面積的最小值是 .
【答案】
【解析】設(shè)直線AB的方程為:x=ty+m,點(diǎn)A(x1 , y1),B(x2 , y2),直線AB與x軸的交點(diǎn)為M(m,0),x=ty+m代入y2=4x,可得y2-4ty-4m=0,根據(jù)韋達(dá)定理有y1y2=-4m,∵ ∴x1x2+y1y2=-4,即
,所以直線AB恒過(guò)
且y1y2=-8
當(dāng)
時(shí),
面積的最小值是
故答案為
根據(jù)題意求出直線的方程,聯(lián)立直線與拋物線的方程消元利用韋達(dá)定理求出兩根之積與兩根之和,代入到向量數(shù)量積的坐標(biāo)公式得到關(guān)于m的值進(jìn)而可求出三角形的面積的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABO中,設(shè) =
,
=
,|
|=|
|=1,C為AB上靠近A點(diǎn)的三等分點(diǎn),過(guò)C作AB的垂線l,設(shè)P為垂線上任一點(diǎn),
=
,則
(
﹣
)=( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為圓柱
的母線,
是底面圓
的直徑,
是
的中點(diǎn).
(Ⅰ)問(wèn): 上是否存在點(diǎn)
使得
平面
?請(qǐng)說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,若 平面
,假設(shè)這個(gè)圓柱是一個(gè)大容器,有條體積可以忽略不計(jì)的小魚(yú)能在容器的任意地方游弋,如果小魚(yú)游到四棱錐
外會(huì)有被捕的危險(xiǎn),求小魚(yú)被捕的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)),設(shè)
與
的交點(diǎn)為
,當(dāng)
變化時(shí),
的軌跡為曲線
.
(1)寫(xiě)出 的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線
的極坐標(biāo)方程為
,
為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐 中,底面
為直角梯形,
,且
,
平面
.
(1)求 與平面
所成角的正弦值;
(2)棱 上是否存在一點(diǎn)
滿足
?若存在,求
的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系 中,以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,圓
的極坐標(biāo)方程為
.
(1)將圓 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過(guò)點(diǎn)
作斜率為1直線
與圓
交于
兩點(diǎn),試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于橢圓 ,有如下性質(zhì):若點(diǎn)
是橢圓上的點(diǎn),則橢圓在該點(diǎn)處的切線方程為
.利用此結(jié)論解答下列問(wèn)題.
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ)若動(dòng)點(diǎn) 在直線
上,經(jīng)過(guò)點(diǎn)
的直線
與橢圓
相切,切點(diǎn)分別為
.求證直線
必經(jīng)過(guò)一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實(shí)數(shù)t , 使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com