【題目】設(shè)a>0, 是R上的偶函數(shù).
(1)求a的值;
(2)證明:f(x)在(0,+∞)上是增函數(shù).
【答案】
(1)解:∵a>0, 是R上的偶函數(shù).
∴f(﹣x)=f(x),即 +
=
,
∴ +a2x=
+
,
2x(a﹣ )﹣
(a﹣
)=0,
∴(a﹣ )(2x+
)=0,∵2x+
>0,a>0,
∴a﹣ =0,解得a=1,或a=﹣1(舍去),
∴a=1;
(2)證明:由(1)可知 ,
∴
∵x>0,
∴22x>1,
∴f'(x)>0,
∴f(x)在(0,+∞)上單調(diào)遞增
【解析】(1)根據(jù)偶函數(shù)的性質(zhì)f(﹣x)=f(x),代入即可求出a的值;(2)由(1)求出了f(x)的解析式,對f(x)進行求導(dǎo),證明其導(dǎo)數(shù)大于0即可;
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)奇偶性的性質(zhì)的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)設(shè)p:實數(shù)x滿足(x﹣3a)(x﹣a)<0,其中a>0,q:實數(shù)x滿足 ,若p是q的充分不必要條件,求實數(shù)a的取值范圍;
(2)設(shè)命題p:“函數(shù) 無極值”;命題q:“方程
表示焦點在y軸上的橢圓”,若p或q為真命題,p且q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(
為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的極值點的個數(shù);
(Ⅱ)若函數(shù)的圖象與函數(shù)
的圖象有兩個不同的交點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過
、
,圓心
在直線
上,過點
,且斜率為
的直線
交圓相交于
、
兩點.
(Ⅰ)求圓的方程;
(Ⅱ)(i)請問是否為定值.若是,請求出該定值,若不是,請說明理由;
(ii)若為坐標原點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點
是圓
上的任意一點,設(shè)
為該圓的圓心,并且線段
的垂直平分線與直線
交于點
.
(1)求點的軌跡方程;
(2)已知兩點的坐標分別為
,
,點
是直線
上的一個動點,且直線
分別交(1)中點
的軌跡于
兩點(
四點互不相同),證明:直線
恒過一定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱臺中,底面
為平行四邊形,
為
上的點.且
.
(1)求證: ;
(2)若為
的中點,
為棱
上的點,且
與平面
所成角的正弦值為
,試求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標系中,曲線
與
軸負半軸交于點
,直線
與
相切于
,
為
上任意一點,
為
在
上的射影,
為
的中點.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)軌跡與
軸交于
,點
為曲線
上的點,且
,
,試探究三角形
的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車入住泉州一周年以來,因其“綠色出行,低碳環(huán)!钡睦砟疃鴤涫苋藗兊南矏,值此周年之際,某機構(gòu)為了了解共享單車使用者的年齡段,使用頻率、滿意度等三個方面的信息,在全市范圍內(nèi)發(fā)放份調(diào)查問卷,回收到有效問卷
份,現(xiàn)從中隨機抽取
份,分別對使用者的年齡段、
~
歲使用者的使用頻率、
~
歲使用者的滿意度進行匯總,得到如下三個表格:
(Ⅰ)依據(jù)上述表格完成下列三個統(tǒng)計圖形:
(Ⅱ)某城區(qū)現(xiàn)有常住人口萬,請用樣本估計總體的思想,試估計年齡在
歲~
歲之間,每月使用共享單車在
~
次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)設(shè)g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com