【題目】為了在夏季降溫和冬季取暖時減少能源消耗,業(yè)主決定對房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度
(毫米)滿足關(guān)系:
.設(shè)
為隔熱層建造費(fèi)用與
年的能源消耗費(fèi)用之和.
(1)請解釋的實際意義,并求
的表達(dá)式;
(2)當(dāng)隔熱層噴涂厚度為多少毫米時,業(yè)主所付的總費(fèi)用最少?并求此時與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點
是圓
:
上的動點,定點
,線段
的垂直平分線交
于
,記
點的軌跡為
.
(Ⅰ)求軌跡的方程;
(Ⅱ)若動直線:
與軌跡
交于不同的兩點
、
,點
在軌跡
上,且四邊形
為平行四邊形.證明:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求證:AE⊥平面PCD;
(2)求PB和平面PAD所成的角的大小;
(3)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體
中,
為
的中點,
為
上任意一點,
,
為
上任意兩點,且
的長為定值,則下面的四個值中不為定值的是( )
A. 點到平面
的距離B. 三棱錐
的體積
C. 直線與平面
所成的角D. 二面角
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中中,曲線
的參數(shù)方程為
(
為參數(shù),
).以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)是曲線
上的一個動點,若點
到直線
的距離的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于
的線性回歸方程
;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價格 (單位:元)與年產(chǎn)量
滿足的函數(shù)關(guān)系式為
,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當(dāng)為何值時,銷售額
最大?
附:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有名工人,已知這
名工人去年完成的產(chǎn)品數(shù)都在區(qū)間
(單位:萬件)內(nèi),其中每年完成
萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成
組,第
組、第
組、第
組、第
組、第
組對應(yīng)的區(qū)間分別為
,
,
,
,
,并繪制出如圖所示的頻率分布直方圖.
(1)求的值,并求去年優(yōu)秀員工人數(shù);
(2)選取合適的抽樣方法從這名工人中抽取容量為
的樣本,求這
組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中人的樣本中的優(yōu)秀員工中隨機(jī)選取
名傳授經(jīng)驗,求選取的
名工人在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為圓
上任意一點,點
,線段
的中垂線交
于點
.
(1)求動點的軌跡方程;
(2)若動直線與圓
相切,且與動點
的軌跡交于點
、
,求
面積的最大值(
為坐標(biāo)原點).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com