日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).

          (1)求證:直線BD1∥平面PAC;
          (2)求證:平面PAC⊥平面BDD1

          【答案】
          (1)證明:設(shè)AC和BD交于點(diǎn)O,連接PO,

          ∵P,O分別是DD1,BD的中點(diǎn),∴PO∥BD1

          又∵BD1面PAC,PO面PAC,

          ∴BD1∥面PAC


          (2)證明:∵長方體ABCD﹣A1B1C1D1中,AB=AD=1,

          ∴底面ABCD是正方形,則AC⊥BD.

          ∵DD1⊥面ABCD,∴DD1⊥AC,

          ∴AC⊥面BDD1,

          ∵AC平面PAC,

          ∴平面PAC⊥平面BDD1


          【解析】(1)設(shè)AC和BD交于點(diǎn)O,連接PO,由P,O分別是DD1 , BD的中點(diǎn),知PO∥BD1 , 由此能夠證明BD1∥面PAC.(2)由題設(shè)條件推導(dǎo)出AC⊥面BDD1 , 由此能夠證明平面PAC⊥平面BDD1
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個平面過另一個平面的垂線,則這兩個平面垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠生產(chǎn)一種機(jī)器的固定成本為5000元,且每生產(chǎn)100部,需要加大投入2500元.對銷售市場進(jìn)行調(diào)查后得知,市場對此產(chǎn)品的需求量為每年500部,已知銷售收入函數(shù)為 ,其中x是產(chǎn)品售出的數(shù)量0≤x≤500.
          (1)若為x年產(chǎn)量,y表示利潤,求y=f(x)的解析式
          (2)當(dāng)年產(chǎn)量為何值時,工廠的年利潤最大?其最大值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x)的定義域?yàn)閧x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時,f(x)=|2x﹣1|,那么當(dāng)x>2時,函數(shù)f(x)的遞減區(qū)間是( )
          A.(3,5)
          B.(3,+∞)
          C.(2,+∞)
          D.(2,4]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)Z=(m2+5m+6)+(m2﹣2m﹣15)i,當(dāng)實(shí)數(shù)m為何值時:
          (1)Z為實(shí)數(shù);
          (2)Z為純虛數(shù);
          (3)復(fù)數(shù)Z對應(yīng)的點(diǎn)Z在第四象限.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)列{an}中, ,an+1=
          (1)計(jì)算a2 , a3 , a4并猜想數(shù)列{an}的通項(xiàng)公式;
          (2)用數(shù)學(xué)歸納法證明你的猜想.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) f(x)= (a>0且a≠1)
          (1)若a=2,解不等式f(x)≤5;
          (2)若函數(shù)f(x)的值域是[4,+∞),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對任意x∈R,函數(shù)y=(k2﹣k﹣2)x2﹣(k﹣2)x﹣1的圖象始終在x軸下方,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).

          (1)求證:平面PDE⊥平面PAC;
          (2)求直線PC與平面PDE所成的角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案