【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若函數(shù)
在區(qū)間
上存在正的極值,求實(shí)數(shù)
的取值范圍.
【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
;(2)
【解析】
(1)求導(dǎo)后,根據(jù)導(dǎo)函數(shù)的正負(fù)可確定所求的單調(diào)區(qū)間;
(2)求導(dǎo)后可知的正負(fù)由
決定,利用導(dǎo)數(shù)可求得
單調(diào)性和最值,根據(jù)
在
上有極值,可知
,解不等式求得
;分別在
和
兩種情況下,根據(jù)
單調(diào)性確定
上的極值,結(jié)合導(dǎo)數(shù)確定極值的正負(fù),從而得到結(jié)果.
(1)當(dāng)時(shí),
,其定義域?yàn)?/span>
.
,令
得:
,令
得:
,
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(2),
,
令,
,則
.
令得:
,令
得:
,
函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
又,
,
,顯然
.
若函數(shù)在區(qū)間
上存在極值,則
,解得:
.
①當(dāng),即
時(shí),一定存在
,使得
,
不妨設(shè),則此時(shí)
,
在區(qū)間
上為負(fù),在區(qū)間
上為正,在區(qū)間
上為負(fù),
在區(qū)間
上為負(fù),在區(qū)間
上為正,在區(qū)間
上為負(fù),
在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
,
.
當(dāng)
時(shí),函數(shù)
在區(qū)間
上存在兩個(gè)極值
,
,且
.
,令
,其中
.
,
在區(qū)間
上單調(diào)遞增,
即當(dāng)時(shí),
,
,
當(dāng)
時(shí),函數(shù)
在區(qū)間
上的極值滿足
,即函數(shù)
在區(qū)間
上存在正的極值.
②當(dāng),即
時(shí),一定存在
,使得
,使得函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減.
則函數(shù)在區(qū)間
上的極大值是
,且
,
當(dāng)
時(shí),函數(shù)
在
上存在正的極值.
綜上所述:當(dāng)時(shí),函數(shù)
在區(qū)間
上存在正的極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
:
,直線
:
.
為圓
內(nèi)一點(diǎn),弦
過(guò)點(diǎn)
,過(guò)點(diǎn)
作
的垂線交
于點(diǎn)
.
(1)若,求
的面積;
(2)判斷直線與圓
的位置關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓.點(diǎn)E為橢圓在第一象限內(nèi)一點(diǎn),點(diǎn)F在橢圓上且與點(diǎn)E關(guān)于原點(diǎn)對(duì)稱,直線
與橢圓交于A,B兩點(diǎn),則點(diǎn)E,F到直線x+y-1=0的距離之和的最大值是________;此時(shí)四邊形AEBF的面積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)到直線
的距離為
,過(guò)點(diǎn)
的直線
與
交于
、
兩點(diǎn).
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為
,直線
的斜率為
,若
,且
與
的交點(diǎn)在拋物線
上,求直線
的斜率和點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,其中e是自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的極大值為
,求實(shí)數(shù)a的值;
(2)當(dāng)a=e時(shí),若曲線與
在
處的切線互相垂直,求
的值;
(3)設(shè)函數(shù),若
>0對(duì)任意的x
(0,1)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)正四面體ABCD的頂點(diǎn)A作一個(gè)形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有( )
A.6個(gè)B.12個(gè)C.16個(gè)D.18個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,
、
分別是其左、右焦點(diǎn),過(guò)
的直線
與橢圓
交于
兩點(diǎn),且橢圓
的離心率為
,
的周長(zhǎng)等于
.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)上購(gòu)物的普及,傳統(tǒng)的實(shí)體店遭受到了強(qiáng)烈的沖擊,某商場(chǎng)實(shí)體店近九年來(lái)的純利潤(rùn)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實(shí)體店純利潤(rùn) | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對(duì)和
作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.254;根據(jù)后5年的數(shù)據(jù),對(duì)
和
作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.985;
(1)如果要用線性回歸方程預(yù)測(cè)該商場(chǎng)2019年實(shí)體店純利潤(rùn),現(xiàn)有兩個(gè)方案:
方案一:選取這9年的數(shù)據(jù),進(jìn)行預(yù)測(cè);
方案二:選取后5年的數(shù)據(jù)進(jìn)行預(yù)測(cè).
從生活實(shí)際背景以及相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適.
附:相關(guān)性檢驗(yàn)的臨界值表:
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機(jī)構(gòu)調(diào)研了大量已經(jīng)開(kāi)店的店主,據(jù)統(tǒng)計(jì),只開(kāi)網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開(kāi)網(wǎng)店又開(kāi)實(shí)體店的占調(diào)查總?cè)藬?shù)的
,現(xiàn)以此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,若從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了5位,求只開(kāi)實(shí)體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家正積極推行垃圾分類(lèi)工作,教育部辦公廳等六部門(mén)也發(fā)布了《關(guān)于在學(xué)校推進(jìn)生活垃圾分類(lèi)管理工作的通知》.《通知》指出,到2020年底,各學(xué)校生活垃圾分類(lèi)知識(shí)普及率要達(dá)到100%某市教育主管部門(mén)據(jù)此做了“哪些活動(dòng)最能促進(jìn)學(xué)生進(jìn)行垃圾分類(lèi)”的問(wèn)卷調(diào)查(每個(gè)受訪者只能在問(wèn)卷的4個(gè)活動(dòng)中選擇一個(gè))如圖是調(diào)查結(jié)果的統(tǒng)計(jì)圖,以下結(jié)論正確的是( 。
A.回答該問(wèn)卷的受訪者中,選擇的(2)和(3)人數(shù)總和比選擇(4)的人數(shù)多
B.回該問(wèn)卷的受訪者中,選擇“校園外宣傳”的人數(shù)不是最少的
C.回答該問(wèn)卷的受訪者中,選擇(4)的人數(shù)比選擇(2)的人數(shù)可能多30人
D.回答該問(wèn)卷的總?cè)藬?shù)不可能是1000人
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com