一動圓與圓O1∶(x-1)2+y2=1外切,與圓O2∶(x+1)2+y2=9內(nèi)切.
(Ⅰ)求動圓圓心M的軌跡L的方程.
(Ⅱ)設(shè)過圓心O1的直線l∶x=my+1與軌跡L相交于A、B兩點(diǎn),請問△ABO2(O2為圓O2的圓心)的內(nèi)切圓N的面積是否存在最大值?若存在,求出這個最大值及直線l的方程,若不存在,請說明理由.
解:(1)設(shè)動圓圓心為M(x,y),半徑為R. 由題意,得 由橢圓定義知M在以O(shè)1,O2為焦點(diǎn)的橢圓上,且a=2,c=1, ∴動圓圓心M的軌跡L的方程為 (2)如圖,設(shè)△ABO2內(nèi)切圓N的半徑為r,與直線l的切點(diǎn)為C,則三角形△ABO2的面積 當(dāng)S△ABO2最大時,r也最大,△ABO2內(nèi)切圓的面積也最大,(7分) 設(shè) 則 由 解得 有 當(dāng)t≥1時, 即當(dāng)t=1,m=0時,4r有最大值3,得 ∴存在直線 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:044
一動圓與圓O1:(x+3)2+y2=1外切,與圓O2:(x-3)2+y2=81內(nèi)切,求動圓圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com