日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分12分)某單位用2 160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2 000平方米的樓房,經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?
          15層。

          試題分析:設(shè)將樓房建為x層,則每平方米的平均購地費用為:
           (元).                        2分
          故每平方米的平均綜合費用為:
          y=560+48x+=560+48(x+).             6分
          當(dāng)x+最小時,y有最小值.
          ∵x>0,∴x+≥2 =30,                8分
          當(dāng)且僅當(dāng)x=,即x=15時上式等號成立.           10分
          所以當(dāng)x=15時,y有最小值2 000元.
          答:該樓房建為15層時,每平方米的平均綜合費用最。    12分
          點評:本題考查函數(shù)模型的建立及解決實際問題的能力,同時也考查學(xué)生的計算能力,屬于基礎(chǔ)題型。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (滿分12分)
          某市居民生活用水標(biāo)準(zhǔn)如下:
          用水量t(單位:噸)
          每噸收費標(biāo)準(zhǔn)(單位:元)
          不超過2噸部分
          m
          超過2噸不超過4噸部分
          3
          超過4噸部分
          n
          已知某用戶1月份用水量為3.5噸,繳納水費為7.5元;2月份用水量為6噸,繳納水費為21元.設(shè)用戶每月繳納的水費為y元.
          (1)寫出y關(guān)于t的函數(shù)關(guān)系式;
          (2)某用戶希望4月份繳納的水費不超過18元,求該用戶最多可以用多少噸水?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題9分)函數(shù)是定義在上的奇函數(shù),當(dāng)
          (Ⅰ)求的值;
          (Ⅱ)求的解析式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (Ⅰ)求的單調(diào)區(qū)間和值域;
          (Ⅱ)設(shè),函數(shù),若對于任意,總存在使得成立,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          對于函數(shù),若存在區(qū)間,使得,則稱區(qū)間為函數(shù)的一個“穩(wěn)定區(qū)間”.現(xiàn)有四個函數(shù):①; ②,
           ④.其中存在“穩(wěn)定區(qū)間”的函數(shù)有(      )
          A.①②B.②③C.③④D.②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (Ⅰ)設(shè),寫出數(shù)列的前5項;
          (Ⅱ)解不等式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)已知函數(shù)在點處取得極小值-4,使其導(dǎo)函數(shù)的取值范圍為(1,3)
          (Ⅰ)求的解析式及的極大值;
          (Ⅱ)當(dāng)時,求的最大值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          關(guān)于的方程,給出下列四個題:
          ①存在實數(shù),使得方程恰有2個不同的實根;
          ②存在實數(shù),使得方程恰有4個不同的實根;
          ③存在實數(shù),使得方程恰有5個不同的實根;
          ④存在實數(shù),使得方程恰有8個不同的實根。
          正確命題的序號為           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知,,,
          若函數(shù)不存在零點,則的范圍是 (     )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案