日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系中,曲線上的點(diǎn)均在曲線外,且對上任意一點(diǎn),到直線的距離等于該點(diǎn)與曲線上點(diǎn)的距離的最小值.

          (1)求動點(diǎn)的軌跡的方程;

          (2)若點(diǎn)是曲線的焦點(diǎn),過的兩條直線關(guān)于軸對稱,且分別交曲線,若四邊形的面積等于,求直線的方程.

          【答案】(1);(2).

          【解析】

          (1)求得的圓心和半徑,利用題目所給“到直線的距離等于該點(diǎn)與曲線上點(diǎn)的距離的最小值”列方程,化簡這個方程可求得軌跡的方程.(2)設(shè)出直線的方程,代入拋物線的方程求得弦長的值.根據(jù)對稱性求得的值,利用面積公式列方程,從而求得所求直線的斜率,進(jìn)而求得直線方程.

          (1)由已知得曲線是以為圓心,為半徑的圓.設(shè),則到直線的距離等于,又到圓上的點(diǎn)的距離的最小值為,所以由已知可得,化簡得, 所以曲線的方程為.(2)依題意可知,直線的斜率存在,并且互為相反數(shù).設(shè)直線的方程,代入拋物線方程并化簡得,故,由弦長公式得,同理.下面求直線夾角的正弦值.設(shè)直線的傾斜角為,則,則直線夾角為,且.所以四邊形的面積為,,解得,此時直線的斜率為,根據(jù)對稱性可知.當(dāng)直線斜率為時,斜率為,也符合題意.故,所求的直線方程為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐P-ABC中,底面ABC,.點(diǎn)D,EN分別為棱PA,PCBC的中點(diǎn),M是線段AD的中點(diǎn),.

          1)求證:平面BDE;

          2)求二面角C-EM-N的正弦值.

          3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某網(wǎng)站針對“2016年春節(jié)放假安排開展網(wǎng)上問卷調(diào)查,提出了A,B兩種放假方案,調(diào)查結(jié)果如表:(單位:萬人)

          人群

          青少年

          中年人

          老年人

          支持A方案

          200

          400

          800

          支持B方案

          100

          100

          n

          已知從所有參與調(diào)查的人中任選1人是老年人的概率為.

          (1)n的值;

          (2)從參與調(diào)查的老年人中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求恰好有1支持B方案的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】4名書法比賽一等獎的同學(xué)和2名繪畫比賽一等獎的同學(xué)中選出2名志愿者,參加某項服務(wù)工作.

          (1)求選出的兩名志愿者都是獲得書法比賽一等獎的同學(xué)的概率;

          (2)求選出的兩名志愿者中一名是獲得書法比賽一等獎,另一名是獲得繪畫比賽一等獎的同學(xué)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.

          (Ⅰ)求證:平面平面;

          (Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.

          1)求他乘火車或乘飛機(jī)去的概率;

          2)他不乘輪船去的概率;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )

          A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

          B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

          C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

          D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論的單調(diào)性;

          2)若在區(qū)間存在一個,使得成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某投資公司計劃在甲、乙兩個互聯(lián)網(wǎng)創(chuàng)新項目上共投資1200萬元,每個項目至少要投資300萬元.根據(jù)市場分析預(yù)測:甲項目的收益與投入滿足,乙項目的收益與投入滿足.設(shè)甲項目的投入為.

          1)求兩個項目的總收益關(guān)于的函數(shù).

          2)如何安排甲、乙兩個項目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為萬元

          查看答案和解析>>

          同步練習(xí)冊答案