日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分10分)已知雙曲線的兩條漸近線均和圓相切,且雙曲線的右焦點(diǎn)為圓的圓心,求該雙曲線的方程。

          試題分析:把圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程:(x-3)2+y2=4,由此知道圓心C(3,0),圓的半徑為2,
          因?yàn)殡p曲線的右焦點(diǎn)為圓C的圓心,所以a2+b2=9………………①
          又雙曲線的兩條漸近線均和圓相切,而雙曲線的漸近線方程為:bx±ay=0,
          所以…………………… ②
          聯(lián)立①②得:。   所以雙曲線的方程:。
          點(diǎn)評(píng):此題重點(diǎn)考查了直線與圓相切的等價(jià)條件。主要利用方程的思想進(jìn)行解題.屬于基礎(chǔ)題型。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知圓,直線
          (1)求證:直線恒過(guò)定點(diǎn)
          (2)判斷直線被圓截得的弦長(zhǎng)何時(shí)最短?并求截得的弦長(zhǎng)最短時(shí)的值及最短長(zhǎng)度。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          過(guò)點(diǎn)可作圓的兩條切線,則實(shí)數(shù)的取值范圍為(    )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知圓方程為
          (1)求圓心軌跡的參數(shù)方程C;
          (2)點(diǎn)是(1)中曲線C上的動(dòng)點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          自點(diǎn)A(3,5)作圓C:的切線,則切線的方程為( )
          A.B.
          C.D.以上都不對(duì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知點(diǎn)P是圓上一點(diǎn),直線l與圓O交于A、B兩點(diǎn),
          ,則面積的最大值為         

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          關(guān)于直線2x-y+3=0對(duì)稱的圓的方程是         ___ .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)已知圓C的圓心在直線y=2x上,且與直線l:x+y+1=0相切于點(diǎn)P(-1,0).
          (Ⅰ)求圓C的方程;
          (Ⅱ)若A(1,0),點(diǎn)B是圓C上的動(dòng)點(diǎn),求線段AB中點(diǎn)M的軌跡方程,并說(shuō)明表示什么曲線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          過(guò)P(1,2)的直線l把圓分成兩個(gè)弓形當(dāng)其中劣孤最短時(shí)直線的方程為
                  .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案