已知圓

,若橢圓

的右頂點為圓

的圓心,離心率為

.
(1)求橢圓

的方程;
(2)若存在直線

,使得直線

與橢圓

分別交于

兩點,與圓

分別交于

兩點,點

在線段

上,且

,求圓

的半徑

的取值范圍.
(1)

;(2)

.
試題分析:(1)圓的圓心已知,可求出橢圓方程中的

,又橢圓離心率知道根據(jù)

可得

,故可求出橢圓方程;(2)設(shè)出

兩點坐標,聯(lián)立橢圓方程,用弦長公式將

表示成

的函數(shù),再將

表示成

的函數(shù),根據(jù)

和基本不等式求解.
試題解析:(1)設(shè)橢圓的焦距為2c,因為

所以橢圓的方程為

。
(2)設(shè)

,
聯(lián)立方程得

所以

則

又點

到直線

的距離

,則

顯然,若點

也在線段

上,則由對稱性可知,直線

就是y軸,與已知矛盾,所以要使

,只要

,所以

當

時,

.
當

時,

3,
又顯然

,所以

。
綜上,圓

的半徑

的取值范圍是

.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,F(xiàn)
1,F(xiàn)
2是離心率為

的橢圓C:

(a>b>0)的左、右焦點,直線

:x=-

將線段F
1F
2分成兩段,其長度之比為1:3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ)求橢圓C的方程;
(Ⅱ)求

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線

的離心率為

,右準線方程為

,
(1)求雙曲線C的方程;
(2)已知直線

與雙曲線C交于不同的兩點A,B,且線段AB的中點在以雙曲線C的實軸長為直徑的圓上,求m的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:

與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
矩形

的中心在坐標原點,邊

與

軸平行,

=8,

=6.

分別是矩形四條邊的中點,

是線段

的四等分點,

是線段

的四等分點.設(shè)直線

與

,

與

,

與

的交點依次為

.

(1)以

為長軸,以

為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點

都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設(shè)線段

的

(

等分點從左向右依次為

,線段

的

等分點從上向下依次為

,那么直線

與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線

的頂點為原點,其焦點

到直線

的距離為

.設(shè)

為直線

上的點,過點

作拋物線

的兩條切線

,其中

為切點.
(Ⅰ)求拋物線

的方程;
(Ⅱ)當點

為直線

上的定點時,求直線

的方程;
(Ⅲ)當點

在直線

上移動時,求

的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知定點F(2,0)和定直線

,動圓P過定點F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點,且線段AB是此圓的直徑時,求直線AB的方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點

,平行于

的直線

在y軸的截距為

,且交橢圓與

兩點,

(1)求橢圓的方程;(2)求

的取值范圍;(3)求證:直線

、

與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線

的左、右焦點分別為

和

,左、右頂點分別為

和

,過焦點

與

軸垂直的直線和雙曲線的一個交點為

,若

是

和

的等差中項,則該雙曲線的離心率為
.
查看答案和解析>>