日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知四棱錐的底面是正方形,底面,上的任意一點(diǎn).

          (1)求證:平面平面
          (2)當(dāng)時(shí),求二面角的大小.

          (1)證明詳見(jiàn)解析;(2).

          解析試題分析:(1)證明平面內(nèi)的直線垂直平面內(nèi)的兩條相交直線,即可證明平面平面;(2)為方便計(jì)算,不妨設(shè),先以為原點(diǎn),所在的直線分別為軸建立空間直角坐標(biāo)系,寫(xiě)給相應(yīng)點(diǎn)的坐標(biāo),然后分別求出平面和平面的一個(gè)法向量,接著計(jì)算出這兩個(gè)法向量夾角的余弦值,根據(jù)二面角的圖形與計(jì)算出的余弦值,確定二面角的大小即可.
          試題解析:(1)底面,所以               2分
          底面是正方形,所以                   4分
          所以平面平面
          所以平面平面                        5分
          (2)證明:點(diǎn)為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,設(shè)
          由題意得,,            6分
          ,又
          設(shè)平面的法向量為,則
          ,令,則,          8分

          設(shè)平面的法向量為,則
          ,令,則           10分
          設(shè)二面角的平面角為,則.
          顯然二面角的平面角為為鈍角,所以
          即二面角的大小為                 12分.
          考點(diǎn):1.空間中的垂直關(guān)系;2.空間向量在解決空間角中的應(yīng)用.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在圓錐PO中,已知PO=,☉O的直徑AB=2,C是的中點(diǎn),D為AC的中點(diǎn).

          求證:平面POD⊥平面PAC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),且滿足=== (如圖(1)),將△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,連接B、P(如圖(2)).

          (1)求證: E⊥平面BEP;
          (2)求直線E與平面BP所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在長(zhǎng)方體ABCDA1B1C1D1中,AA1AD=1,ECD的中點(diǎn).

          (1)求證:B1EAD1.
          (2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
          (3)若二面角AB1EA1的大小為30°,求AB的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,是邊長(zhǎng)為的正方形,平面,與平面所成角為.

          (1)求證:平面;
          (2)求二面角的余弦值;
          (3)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PDQA,QAADPD.

          (1)求證:平面PQC⊥平面DCQ
          (2)若二面角Q-BP-C的余弦值為-,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,底面, ,的中點(diǎn),的中點(diǎn).

          (Ⅰ)證明:直線平面;
          (Ⅱ)求異面直線所成角的大小;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖所示,四棱錐SABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn).

          (1)求證:AC⊥SD;
          (2)若SD⊥平面PAC,求二面角PACD的大小;
          (3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,,

          (1)求證:AC⊥BF;
          (2)求點(diǎn)A到平面FBD的距離. 

          查看答案和解析>>