日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1+2x)2(1-x)5=a0+a1x+a2x2+…+a7x7,則a1-a2+a3-a4+a5-a6+a7等于(    )

          A.32                B.-32              C.-33               D.-31

          解析:用賦值法.

          答案:D

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)(1+2x)2(1+x)5=a0+a1x+a2x+a2x2+…+a7x7,則a1+a2+a3+a4+a5+a6+a7=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=lg(ax2-2x+2).
          (1)若函數(shù)y=lg(ax2-2x+2)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
          (2)若a=1且x≤1,求y=lg(ax2-2x+2)的反函數(shù)f-1(x);
          (3)若方程lg(ax2-2x+2)=1在[
          12
          ,2]
          內(nèi)有解,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
          函數(shù)h(x)=
          f(x)•g(x),當(dāng)x∈M且x∈N
          f(x),當(dāng)x∈M且x∉N
          g(x),當(dāng)x∉M且x∈N

          (1)若函數(shù)f(x)=
          1
          x+1
          ,g(x)=x2+2x+2,x∈R
          ,求函數(shù)h(x)的取值集合;
          (2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
          1
          |P1P2|2
          +
          1
          |P1P3|2
          +…+
          1
          |P1Pn|2
          2
          5
          ;
          (3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問,是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•奉賢區(qū)一模)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡記為:A=
          .
          x\~(a1)(a2)(a3)…(an-1)(an)
          .如:A=
          .
          2\~(-1)(3)(-2)(1)
          ,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
          (1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡記形式.
          (2)若數(shù)列{an}滿足a1=2,ak+1=
          1
          1-ak
          ,k∈N*
          ,bn=
          .
          2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
          (n∈N*).求證:bn=
          2
          7
          8n-
          2
          7

          (3)若常數(shù)t滿足t≠0且t>-1,dn=
          .
          t\~(
          C
          1
          n
          )(
          C
          2
          n
          )(
          C
          3
          n
          )…(
          C
          n-1
          n
          )(
          C
          n
          n
          )
          ,求
          lim
          n→∞
          dn
          dn+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•浦東新區(qū)二模)一位同學(xué)對(duì)三元一次方程組
          a1x+b1y+c1z=d1
          a2x+b2y+c2z=d2
          a3x+b3y+c3z=d3
          (其中實(shí)系數(shù)ai,bi,ci(i=1,2,3)不全為零)的解的情況進(jìn)行研究后得到下列結(jié)論:
          結(jié)論1:當(dāng)D=0,且Dx=Dy=Dz=0時(shí),方程組有無窮多解;
          結(jié)論2:當(dāng)D=0,且Dx,Dy,Dz都不為零時(shí),方程組有無窮多解;
          結(jié)論3:當(dāng)D=0,且Dx=Dy=Dz=0時(shí),方程組無解.
          但是上述結(jié)論均不正確.下面給出的方程組可以作為結(jié)論1、2和3的反例依次為( 。
          (1)
          x+2y+3z=0
          x+2y+3z=1
          x+2y+3z=2
          ;  (2)
          x+2y=0
          x+2y+z=0
          2x+4y=0
          ;  (3)
          2x+y=1
          -x+2y+z=0
          x+3y+z=2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案