日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正項數(shù)列{an}的前n項的乘積等于Tn=(
          1
          4
          )
          n2-6n
          (n∈N*),bn=log2an,則數(shù)列{bn}的前n項和Sn中最大值是( 。
          A、S6
          B、S5
          C、S4
          D、S3
          分析:由已知,探求{an}的性質(zhì),再去研究數(shù)列{bn}的性質(zhì),繼而解決Sn中最大值.
          解答:解:由已知當n=1時,a1=T1=(
          1
          4
          )
          -5
          =45
          ,當n≥2時,an=
          Tn
          Tn-1
          =(
          1
          4
          )
          2n-7
          ,n=1時也適合上式,
          數(shù)列{an}的通項公式為an=(
          1
          4
          )
          2n-7
          ∴bn=log2an=14-4n,數(shù)列{bn}是以10為首項,以-4為公差的等差數(shù)列.
          Sn=10n+
          n(n-1)×(-4)
          2
          =-2n2+12n=-2[(n-3)2-9],當n=3時取得最大值.
          故選D
          點評:本題主要考查了等差數(shù)列的判定,前n項公式,考查了學生對基礎知識的綜合運用.體現(xiàn)了函數(shù)思想的應用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知正項數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
          (1)求證:數(shù)列{
          an
          2n+1
          }
          為等差數(shù)列,并求數(shù)列{an}的通項an
          (2)設bn=
          1
          an
          ,求數(shù)列{bn}的前n項和為Sn,并求Sn的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          定義:稱
          n
          a1+a2+…+an
          為n個正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項數(shù)列{an}的前n項的“均倒數(shù)”為
          1
          2n
          ,則
          lim
          n→∞
          nan
          sn
          (  )
          A、0
          B、1
          C、2
          D、
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知正項數(shù)列an中,a1=2,點(
          an
          ,an+1)
          在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(bn,Tn)在直線y=-
          1
          2
          x+3
          上,其中Tn是數(shù)列bn的前項和.(n∈N+).
          (1)求數(shù)列an的通項公式;
          (2)求數(shù)列bn的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知正項數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
          (1)求證:數(shù)列{bn}為等比數(shù)列;
          (2)記Tn為數(shù)列{
          1
          log2bn+1log2bn+2
          }
          的前n項和,是否存在實數(shù)a,使得不等式Tn<log0.5(a2-
          1
          2
          a)
          對?n∈N+恒成立?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知正項數(shù)列{an},Sn=
          1
          8
          (an+2)2

          (1)求證:{an}是等差數(shù)列;
          (2)若bn=
          1
          2
          an-30
          ,求數(shù)列{bn}的前n項和.

          查看答案和解析>>

          同步練習冊答案