日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (Ⅰ)當(dāng)時,求的最小值.

          (Ⅱ)若在區(qū)間上有兩個極值點,

          (i)求實數(shù)的取值范圍;

          (ii)求證:.

          【答案】(Ⅰ);(Ⅱ)(i);(ii)詳見解析.

          【解析】

          (Ⅰ)求出,列表討論的單調(diào)性,問題得解。

          (Ⅱ)(i)由在區(qū)間上有兩個極值點轉(zhuǎn)化成有兩個零點,即有兩個零點,求出,討論的單調(diào)性,問題得解。

          (ii)由,將轉(zhuǎn)化成,由得單調(diào)性可得,討論的單調(diào)性即可得證。

          解:(Ⅰ)當(dāng)時,,,令,得.

          的單調(diào)性如下表:

          -

          0

          +

          單調(diào)遞減

          單調(diào)遞增

          易知.

          (Ⅱ)(i).令,則.

          ,得.

          的單調(diào)性如下表:

          -

          0

          +

          單調(diào)遞減

          單調(diào)遞增

          在區(qū)間上有兩個極值點,即在區(qū)間上有兩個零點,

          結(jié)合的單調(diào)性可知,,即.

          所以,即的取值范圍是.

          (ii)由(i)知,所以.

          ,,,結(jié)合的單調(diào)性可知,.

          ,則.當(dāng)時,,,,

          所以上單調(diào)遞增,而,

          因此.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓)的左焦點為,其中四個頂點圍成的四邊形面積為.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)過點的直線與曲線交于兩點,設(shè)的中點為,兩點為橢圓上關(guān)于原點對稱的兩點,且),求四邊形面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù),.

          1)若曲線與直線的一個交點縱坐標(biāo)為,求的值;

          2)若曲線上的點到直線的最大距離為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從甲、乙兩品種的棉花中各抽測了25根棉花的纖維長度(單位:mm),得到如圖5的莖葉圖,整數(shù)位為莖,小數(shù)位為葉,如27.1mm的莖為27,葉為1.

          (1)試比較甲、乙兩種棉花的纖維長度的平均值的大小及方差的大小;(只需寫出估計的結(jié)論,不需說明理由)

          (2)將棉花按纖維長度的長短分成七個等級,分級標(biāo)準(zhǔn)如表:

          試分別估計甲、乙兩種棉花纖維長度等級為二級的概率;

          (3)為進一步檢驗甲種棉花的其它質(zhì)量指標(biāo),現(xiàn)從甲種棉花中隨機抽取4根,記為抽取的棉花纖維長度為二級的根數(shù),求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(k為常數(shù))是實數(shù)集R上的奇函數(shù),其中e為自然對數(shù)的底數(shù)。

          (1)求k的值;

          (2)討論關(guān)于x的方程如的根的個數(shù)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的曲線圖是2020125日至2020212日陜西省及西安市新冠肺炎累計確診病例的曲線圖,則下列判斷正確的是(

          A.131日陜西省新冠肺炎累計確診病例中西安市占比超過了

          B.125日至212日陜西省及西安市新冠肺炎累計確診病例都呈遞增趨勢

          C.22日后到210日陜西省新冠肺炎累計確診病例增加了97

          D.28日到210日西安市新冠肺炎累計確診病例的增長率大于26日到28日的增長率

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟帶來了一定的增長,某紀(jì)念商品店的銷售人員為了統(tǒng)計世界杯足球賽期間商品的銷售情況,隨機抽查了該商品商店某天200名顧客的消費金額情況,得到如圖頻率分布表:將消費顧客超過4萬盧布的顧客定義為足球迷”,消費金額不超過4萬盧布的顧客定義為“非足球迷”。

          消費金額/萬盧布

          合計

          顧客人數(shù)

          9

          31

          36

          44

          62

          18

          200

          (1)求這200名顧客消費金額的中位數(shù)與平均數(shù)(同一組中的消費金額用該組的中點值作代表;

          (2)該紀(jì)念品商店的銷售人員為了進一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機選取3人進行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示1,已知四邊形ABCD滿足,EBC的中點.沿著AE翻折成,使平面平面AECD,FCD的中點,如圖所示2.

          1)求證:平面;

          2)求AE到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

          (1)求的離心率及方程;

          (2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案