日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) , .

          (1)求函數(shù) 的最小正周期;

          (2)若 ,且 ,求 的值.

          【答案】(1) (2)

          【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進(jìn)而得到周期;(2)由,得到, ,由配湊角公式得到,代入值得到函數(shù)值.

          解析:

          (1)由題意

          =

          所以 的最小正周期為 ;

          (2)由

          又由 ,所以

          型】解答
          結(jié)束】
          20

          【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬(wàn)元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出 萬(wàn)元,以后每年的支出比上一年增加了 萬(wàn)元,從第一年起每年農(nóng)場(chǎng)品銷售收入為 萬(wàn)元(前 年的純利潤(rùn)綜合=前 年的 總收入-前 年的總支出-投資額 萬(wàn)元).

          (1)該廠從第幾年開始盈利?

          (2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.

          【答案】(1) 從第 開始盈利(2) 該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元

          【解析】試題分析(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2根據(jù)公式得到,由均值不等式得到函數(shù)最值.

          解析:

          由題意可知前 年的純利潤(rùn)總和

          (1)由 ,即 ,解得

          知,從第 開始盈利.

          (2)年平均純利潤(rùn)

          因?yàn)?/span> ,即

          所以

          當(dāng)且僅當(dāng) ,即 時(shí)等號(hào)成立.

          年平均純利潤(rùn)最大值為 萬(wàn)元,

          故該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱錐A-BCDE,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABCD是等腰直角三角形,EBC=ABC=90°,BC=CD=2BE,點(diǎn)M是棱AD的中點(diǎn)

          (1)求異面直線MEAB所成角的大小;

          ()證明:平面AED⊥平面ACD

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線C的極坐標(biāo)方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
          (1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
          (2)設(shè)點(diǎn)Q(1,2),直線l與曲線C交于A,B兩點(diǎn),求|QA||QB|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若關(guān)于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且僅有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍為(
          A.(﹣ ]
          B.(﹣1, ]
          C.(﹣ ,﹣ ]
          D.(﹣ ,﹣

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)業(yè)余足球運(yùn)動(dòng)員共有15000人,其中男運(yùn)動(dòng)員9000人,女運(yùn)動(dòng)員6000人,為調(diào)查該地區(qū)業(yè)余足球運(yùn)動(dòng)員每周平均踢足球占用時(shí)間的情況,采用分層抽樣的方法,收集300位業(yè)務(wù)足球運(yùn)動(dòng)員每周平均踢足球占用時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))
          得到業(yè)余足球運(yùn)動(dòng)員每周平均踢足球所占用時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
          將“業(yè)務(wù)運(yùn)動(dòng)員的每周平均踢足球時(shí)間所占用時(shí)間超過4小時(shí)”
          定義為“熱愛足球”.
          附:K2=

          P(K2≥k0

          0.10

          0.05

          0.010

          0.005

          k0

          2.706

          3.841

          6.635

          7.879


          (1)應(yīng)收集多少位女運(yùn)動(dòng)員樣本數(shù)據(jù)?
          (2)估計(jì)該地區(qū)每周平均踢足球所占用時(shí)間超過4個(gè)小時(shí)的概率.
          (3)在樣本數(shù)據(jù)中,有80位女運(yùn)動(dòng)員“熱愛足球”.請(qǐng)畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認(rèn)為“熱愛足球與性別有關(guān)”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)是定義在上的奇函數(shù),且.

          (1)確定的解析式;

          2)判斷并證明上的單調(diào)性;

          3)解不等式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知表示兩個(gè)不同的平面, 表示兩條不同直線對(duì)于下列兩個(gè)命題

          ①若,”是“”的充分不必要條件;

          ②若,”是“”的充要條件.判讀正確的是(

          A. ①②都是真命題 B. ①是真命題,②是假命題

          C. ①是假命題,②是真命題 D. ①②都是假命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

          (1)直接寫出函數(shù), 的增區(qū)間;

          (2)寫出函數(shù), 的解析式;

          (3)若函數(shù), ,求函數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為.

          (1)求的值;

          (2)求函數(shù)的對(duì)稱軸方程;

          (3)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)根,求m的取值范圍。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案