日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓O和定點A(2,1),由圓O外一點向圓O引切線PQ,切點為Q,且滿足

          (1) 求實數(shù)a、b間滿足的等量關(guān)系;
          (2) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.
          (1);(2) 。


          試題分析:(1)連為切點,,由勾股定理有
          .
          又由已知,故
          即:.
          化簡得:.  
          (2)設(shè)圓 的半徑為,
           圓與圓O有公共點,且半徑最小,

          故當(dāng)時,
          此時, .
          得半徑取最小值時圓的方程為
          另解: 圓與圓O有公共點,圓半徑最小時為與圓O外切的情形,而這些半徑的最小值為圓心到直線的距離減去,圓心為過原點與垂直的直線 的交點.
           = -1 = -1.
          又 x-2y = 0,
          解方程組,得.即 ( ,).
          ∴ 所求圓方程為.   
          點評:此題主要考查了圓的標(biāo)準(zhǔn)方程,兩點間的距離公式,以及二次函數(shù)的性質(zhì),熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過點,其中e為橢圓的離心率.且橢圓與直線 有且只有一個交點。

          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)不經(jīng)過原點的直線與橢圓相交與A,B兩點,第一象限內(nèi)的點在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知雙曲線的一條漸近線方程為,則其離心率為    。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,橢圓的中心在坐標(biāo)原點0,頂點分別是A1, A2, B1, B2,焦點分別為F1 ,F2,延長B1F2 與A2B2交于P點,若為鈍角,則此橢圓的離心率的取值范圍為
          A.(0,B.(,1)
          C.(0,D.(,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          已知,,O為坐標(biāo)原點,動點E滿足:

          (Ⅰ) 求點E的軌跡C的方程;
          (Ⅱ)過曲線C上的動點P向圓O:引兩條切線PA、PB,切點分別為A、B,直線AB與x軸、y軸分別交于M、N兩點,求ΔMON面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線:的焦點為,、是拋物線上異于坐標(biāo)原點的不同兩點,拋物線在點、處的切線分別為,且,相交于點.

          (1) 求點的縱坐標(biāo); 
          (2) 證明:、、三點共線;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          焦點在軸上,虛軸長為8,焦距為10的雙曲線的標(biāo)準(zhǔn)方程是     ;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓:的一個頂點為,離心率為.直線與橢圓交于不同的兩點M,N.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)當(dāng)△AMN得面積為時,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知雙曲線的右焦點為,則該雙曲線的漸近線方程為(    )                         
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案