日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)..
          (1)設(shè)曲線處的切線為,點(diǎn)(1,0)到直線l的距離為,求a的值;
          (2)若對(duì)于任意實(shí)數(shù)恒成立,試確定的取值范圍;
          (3)當(dāng)是否存在實(shí)數(shù)處的切線與y軸垂直?若存在,求出的值;若不存在,請(qǐng)說明理由.
          (1)(2)(3)不存在

          試題分析:
          (1)該問切點(diǎn)橫坐標(biāo)已知,則利用切點(diǎn)在曲線上,帶入曲線即可得到切點(diǎn)的縱坐標(biāo),對(duì)進(jìn)行求導(dǎo)并得到在切點(diǎn)處的導(dǎo)函數(shù)值即為切線的斜率,有切線的斜率,切線又過切點(diǎn),利用直線的點(diǎn)斜式即可求的切線的方程,利用點(diǎn)到直線的距離公式結(jié)合條件點(diǎn)到切線的距離為即可求的參數(shù)的值.
          (2)該問為恒成立問題可以考慮分離參數(shù)法,即把參數(shù)a與x進(jìn)行分離得到,則,再利用函數(shù)的導(dǎo)函數(shù)研究函數(shù)在區(qū)間的最大值,即可求的a的取值范圍.
          (3)根據(jù)切線的斜率即為曲線C在切點(diǎn)處的導(dǎo)函數(shù)值,即該問可以轉(zhuǎn)化為是否存在使得,令,則即存在使得,對(duì)再次求導(dǎo)進(jìn)行最值求解可得,所以不存在使得.
          試題解析:
          (1),.
          處的切線斜率為
          ∴切線的方程為,即.  2分
          又點(diǎn)到切線的距離為,所以,
          解之得,    4分
          (2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043155642867.png" style="vertical-align:middle;" />恒成立,
          恒成立;
          恒成立,即,在上恒成立,
          設(shè)
          當(dāng)時(shí),,則上單調(diào)遞增;
          當(dāng)時(shí),,則上單調(diào)遞減;
          所以當(dāng)時(shí),取得最大值,,
          所以的取值范圍為.    9分
          (3)依題意,曲線的方程為,令
          所以,
          設(shè),則,當(dāng),
          上單調(diào)增函數(shù),因此上的最小值為

          時(shí),
          所以
          曲線在點(diǎn)處的切線與軸垂直等價(jià)于方程有實(shí)數(shù)解,但是,沒有實(shí)數(shù)解,故不存在實(shí)數(shù)使曲線在點(diǎn)處的切線與軸垂直.    14分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)fx)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù),.
          (1)求的單調(diào)區(qū)間和最小值;
          (2)討論的大小關(guān)系;
          (3)是否存在x0>0,使得|gx)﹣gx0)|<對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù),其圖象與軸交于兩點(diǎn),且x1x2
          (1)求的取值范圍;
          (2)證明:為函數(shù)的導(dǎo)函數(shù));
          (3)設(shè)點(diǎn)C在函數(shù)的圖象上,且△ABC為等腰直角三角形,記,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知曲線.
          (1)求曲線在點(diǎn)()處的切線方程;
          (2)若存在使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知
          (1)當(dāng)時(shí),求的極大值點(diǎn);
          (2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于兩點(diǎn),過線段的中點(diǎn)做軸的垂線分別交、于點(diǎn),證明:在點(diǎn)處的切線與在點(diǎn)處的切線不平行.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
          (1)當(dāng)a=0時(shí),f(x)≥g(x)在(1,+∞),上恒成立,求實(shí)數(shù)m的取值范圍;
          (2)當(dāng)m=2時(shí),若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知是函數(shù)的導(dǎo)數(shù),則=     

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,則g(4)= (    )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          記函數(shù)的導(dǎo)函數(shù)為,則 的值為     

          查看答案和解析>>

          同步練習(xí)冊(cè)答案