日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】從甲、乙、丙、丁四位同學(xué)中選拔一位成績較穩(wěn)定的優(yōu)秀選手,參加山東省職業(yè)院校技能大賽,在同樣條件下經(jīng)過多輪測試,成績分析如表所示,根據(jù)表中數(shù)據(jù)判斷,最佳人選為( ) 成績分析表

          平均成績

          96

          96

          85

          85

          標(biāo)準(zhǔn)差s

          4

          2

          4

          2


          A.甲
          B.乙
          C.丙
          D.丁

          【答案】B
          【解析】解:根據(jù)表中數(shù)據(jù)知,平均成績較高的是甲和乙,標(biāo)準(zhǔn)差較小的是乙和丙,

          由此知乙同學(xué)成績較高,且發(fā)揮穩(wěn)定,應(yīng)選乙參加.

          故選:B.

          【考點精析】本題主要考查了極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識點,需要掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
          (1)求圓C的極坐標(biāo)方程;
          (2)直線l的極坐標(biāo)方程是 ,射線 與圓C的交點為O,P,與直線l的交點為Q,求|OP||OQ|的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|2x﹣1|,x∈R.
          (1)若不等式f(x)≤a的解集為{x|0≤x≤1},求a的值;
          (2)若g(x)= 的定義域為R,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為圓心且與直線mx﹣y﹣2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(
          A.x2+y2=5
          B.x2+y2=3
          C.x2+y2=9
          D.x2+y2=7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O為BD的中點.
          (1)求證:CD∥平面POA;
          (2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A﹣PD﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)求該函數(shù)的最小正周期;
          (2)求該函數(shù)的單調(diào)遞減區(qū)間;
          (3)用“五點法”作出該函數(shù)在長度為一個周期的閉區(qū)間上的簡圖.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓A:(x+1)2+y2=16,圓C過點B(1,0)且與圓A相切,設(shè)圓心C的軌跡為曲線E

          (Ⅰ)求曲線E的方程;

          (Ⅱ)過點B作兩條互相垂直的直線l1,l2,直線l1E交于M,N兩點,直線l2與圓A交于P,Q兩點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)預(yù)測,某地第n(n∈N*)個月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an= ,bn=n+5,第n個月底的共享單車的保有量是前n個月的累計投放量與累計損失量的差.
          (1)求該地區(qū)第4個月底的共享單車的保有量;
          (2)已知該地共享單車停放點第n個月底的單車容納量Sn=﹣4(n﹣46)2+8800(單位:輛).設(shè)在某月底,共享單車保有量達(dá)到最大,問該保有量是否超出了此時停放點的單車容納量?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
          A.4.5
          B.6
          C.7.5
          D.9

          查看答案和解析>>

          同步練習(xí)冊答案