日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在Rt△AOB中,,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
          (I)求證:平面COD⊥平面AOB;
          (II)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的余弦值大;
          (III)求CD與平面AOB所成角最大時(shí)的正切值大。

          【答案】分析:(1)欲證平面COD⊥平面AOB,先證直線與平面垂直,由題意可得:CO⊥AO,BO⊥AO,CO⊥BO,所以CO⊥平面AOB,進(jìn)一步易得平面COD⊥平面AOB
          (2)解法一:求異面直線所成的角,需要將兩條異面直線平移交于一點(diǎn),由D為AB的中點(diǎn),故平移時(shí)很容易應(yīng)聯(lián)想到中位線,作DE⊥OB,垂足為E,連接CE,則DE∥AO,所以∠CDE是異面直線AO與CD所成的角
          解法二:以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OB、OA為x、y、z軸,建立空間直角坐標(biāo)系O-xyz.這種解法的好處就是:(1)解題過程中較少用到空間幾何中判定線線、面面、線面相對(duì)位置的有關(guān)定理,因?yàn)檫@些可以用向量方法來解決.(2)即使立體感稍差一些的學(xué)生也可以順利解出,因?yàn)橹恍璁媯(gè)草圖以建立坐標(biāo)系和觀察有關(guān)點(diǎn)的位置即可.
          (3)本題的設(shè)問是遞進(jìn)式的,第(1)問是為第(3)問作鋪墊的.求直線與平面所成的角,首先要作出這個(gè)平面的垂線,由第(1)問可知:CO⊥平面AOB,所以∠CDO是CD與平面AOB所成的角,tan∠CDO==,當(dāng)OD最小時(shí),tan∠CDO最大
          解答:解:(I)由題意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C是直二面角,
          又∵二面角B-AO-C是直二面角,
          ∴CO⊥BO,
          又∵AO∩BO=O,
          ∴CO⊥平面AOB,
          又CO?平面COD,
          ∴平面COD⊥平面AOB.(4分)
          (II)解法一:作DE⊥OB,垂足為E,連接CE(如圖),則DE∥AO,
          ∴∠CDE是異面直線AO與CD所成的角.
          在 Rt△COE中,CO=BO=2,



          ∴在Rt△CDE中,
          ∴異面直線AO與CD所成角的余弦值大小為.(9分)

          解法二:建立空間直角坐標(biāo)系O-xyz,如圖,
          則O(0,0,0),,C(2,0,0),,
          ,,
          =
          ∴異面直線AO與CD所成角的余弦值為.(9分)
          (III)由(I)知,CO⊥平面AOB,
          ∴∠CDO是CD與平面AOB所成的角,
          .當(dāng)OD最小時(shí),∠CDO最大,這時(shí),OD⊥AB,垂足為D,,
          ∴CD與平面AOB所成角的最大時(shí)的正切值為.(14分)
          點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、異面直線所成的角的度量、線面角的度量等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△AOB中,∠OAB=
          π6
          ,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
          (Ⅰ)求證:平面COD⊥平面AOB;
          (Ⅱ)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的余弦值大;
          (Ⅲ)求CD與平面AOB所成角最大時(shí)的正切值大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△AOB中,∠OAB=
          π6
          ,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
          (1)求證:平面COD⊥平面AOB;
          (2)設(shè)CD與平面AOB所成角的最大值為α,求tanα值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△AOB中,∠OAB=
          π6
          ,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C為直二面角.D是AB的中點(diǎn).
          (I)求證:平面COD⊥平面AOB;
          (II)求異面直線AO與CD所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在 Rt△AOB中,∠OAB=
          π6
          ,斜邊AB=4,D是AB的中點(diǎn).現(xiàn)將 Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)C為圓錐體底面圓周上的一點(diǎn),且∠BOC=90°.
          (1)求異面直線AO與CD所成角的大;
          (2)若某動(dòng)點(diǎn)在圓錐體側(cè)面上運(yùn)動(dòng),試求該動(dòng)點(diǎn)從點(diǎn)C出發(fā)運(yùn)動(dòng)到點(diǎn)D所經(jīng)過的最短距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•普陀區(qū)一模)如圖,在 Rt△AOB中,∠OAB=
          π6
          ,斜邊AB=4,D是AB的中點(diǎn).現(xiàn)將 Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)C為圓錐體底面圓周上的一點(diǎn),且∠BOC=90°.
          (1)求該圓錐體的體積;
          (2)求異面直線AO與CD所成角的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案