日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•上海)已知拋物線C:y2=4x 的焦點(diǎn)為F.
          (1)點(diǎn)A,P滿足
          AP
          =-2
          FA
          .當(dāng)點(diǎn)A在拋物線C上運(yùn)動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡方程;
          (2)在x軸上是否存在點(diǎn)Q,使得點(diǎn)Q關(guān)于直線y=2x的對(duì)稱(chēng)點(diǎn)在拋物線C上?如果存在,求所有滿足條件的點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
          分析:(1)設(shè)出動(dòng)點(diǎn)P和A的坐標(biāo),求出拋物線焦點(diǎn)F的坐標(biāo),由
          AP
          =-2
          FA
          得出P點(diǎn)和A點(diǎn)的關(guān)系,由代入法求動(dòng)點(diǎn)P的軌跡方程;
          (2)設(shè)出點(diǎn)Q的坐標(biāo),在設(shè)出其關(guān)于直線y=2x的對(duì)稱(chēng)點(diǎn)Q的坐標(biāo),由斜率關(guān)系及中點(diǎn)在y=2x上得到兩對(duì)稱(chēng)點(diǎn)坐標(biāo)之間的關(guān)系,再由點(diǎn)Q在拋物線上,把其坐標(biāo)代入拋物線方程即可求得Q點(diǎn)的坐標(biāo).
          解答:解:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則
          AP
          =(x-xA,y-yA)

          因?yàn)镕的坐標(biāo)為(1,0),所以
          FA
          =(xA-1,yA)
          ,
          AP
          =-2
          FA
          ,得(x-xA,y-yA)=-2(xA-1,yA).
          x-xA=-2(xA-1)
          y-yA=-2yA
          ,解得
          xA=2-x
          yA=-y

          代入y2=4x,得到動(dòng)點(diǎn)P的軌跡方程為y2=8-4x.
          (2)設(shè)點(diǎn)Q的坐標(biāo)為(t,0).點(diǎn)Q關(guān)于直線y=2x的對(duì)稱(chēng)點(diǎn)為Q(x,y),
          y
          x-t
          =-
          1
          2
          y
          2
          =x+t
          ,解得
          x=-
          3
          5
          t
          y=
          4
          5
          t

          若Q在C上,將Q的坐標(biāo)代入y2=4x,得4t2+15t=0,即t=0或t=-
          15
          4

          所以存在滿足題意的點(diǎn)Q,其坐標(biāo)為(0,0)和(-
          15
          4
          ,0
          ).
          點(diǎn)評(píng):本題考查了軌跡方程,考查了直線和圓錐曲線間的關(guān)系,考查了代入法求曲線方程,考查了存在性問(wèn)題的求解方法,屬中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•上海)已知圓柱Ω的母線長(zhǎng)為l,底面半徑為r,O是上底面圓心,A,B是下底面圓周上兩個(gè)不同的點(diǎn),BC是母線,如圖,若直線OA與BC所成角的大小為
          π
          6
          ,則
          l
          r
          =
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•上海)已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形”的充要條件為“函數(shù)y=f(x+a)-b 是奇函數(shù)”.
          (1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
          (2)求函數(shù)h(x)=log2
          2x4-x
           圖象對(duì)稱(chēng)中心的坐標(biāo);
          (3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對(duì)稱(chēng)圖象”的充要條件為“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)-b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請(qǐng)給予證明;如果是假命題,請(qǐng)說(shuō)明理由,并類(lèi)比題設(shè)的真命題對(duì)它進(jìn)行修改,使之成為真命題(不必證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•上海)已知a,b,c∈R,“b2-4ac<0”是“函數(shù)f(x)=ax2+bx+c的圖象恒在x軸上方”的( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•上海)已知向量
          a
          =(1,k)
          b
          =(9,k-6)
          .若
          a
          b
          ,則實(shí)數(shù) k=
          -
          3
          4
          -
          3
          4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案