日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓的左、右焦點分別
          ,其上頂點為已知是邊長為的正三角形.
          (1)求橢圓的方程;
          (2)過點任作一動直線交橢圓兩點,記.若在線段上取一點,使得,當(dāng)直線運動時,點在某一定直線上運動,求出該定直線的方程.

          (1)橢圓的方程為;(2)定直線的方程為.

          解析試題分析:(1)因為是邊長為2的正三角形,所以,橢圓的方程為;(2)設(shè)直線方程為,與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理,表示出
          設(shè)點的坐標(biāo)為則由,解得, 故點在定直線上.
          試題解析:(Ⅰ)因為是邊長為2的正三角形,所以,所以,橢圓的方程為
          (Ⅱ)由題意知,直線的斜率必存在,設(shè)其方程為.并設(shè)
          消去
           

          設(shè)點的坐標(biāo)為則由
          解得: 
          故點在定直線上.
          考點:橢圓的性質(zhì)、設(shè)而不求思想、定直線問題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          過點作傾斜角為的直線與曲線C交于不同的兩點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知,,,分別是橢圓的四個頂點,△是一個邊長為2的等邊三角形,其外接圓為圓
          (1)求橢圓及圓的方程;
          (2)若點是圓劣弧上一動點(點異于端點,),直線分別交線段,橢圓于點,,直線交于點
          (。┣的最大值;
          (ⅱ)試問:,兩點的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知定點F(1,0),點軸上運動,點軸上,點
          為平面內(nèi)的動點,且滿足
          (1)求動點的軌跡的方程;
          (2)設(shè)點是直線上任意一點,過點作軌跡的兩條切線,,切點分別為,,設(shè)切線,的斜率分別為,,直線的斜率為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設(shè)點).
          (1)指出,并求的關(guān)系式();
          (2)求)的通項公式,并指出點列,,,向哪一點無限接近?說明理由;
          (3)令,數(shù)列的前項和為,試比較的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
          (1)求雙曲線方程;
          (2)設(shè)Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)拋物線:的準(zhǔn)線與軸交于點,焦點為;橢圓為焦點,離心率.設(shè)的一個交點.

          (1)求橢圓的方程.
          (2)直線的右焦點,交兩點,且等于的周長,求的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓過點,且離心率為.斜率為的直線與橢圓交于A、B兩點,以為底邊作等腰三角形,頂點為.
          (1)求橢圓的方程;
          (2)求△的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標(biāo)原點),求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案