已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
(1)求雙曲線方程;
(2)設Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2
,求直線l的方程.
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓經(jīng)過點P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓,經(jīng)過橢圓
的右焦點F及上頂點B,過圓外一點
傾斜角為
的直線
交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線的方程為
,過原點作斜率為
的直線和曲線
相交,另一個交點記為
,過
作斜率為
的直線與曲線
相交,另一個交點記為
,過
作斜率為
的直線與曲線
相交,另一個交點記為
,如此下去,一般地,過點
作斜率為
的直線與曲線
相交,另一個交點記為
,設點
(
).
(1)指出,并求
與
的關系式(
);
(2)求(
)的通項公式,并指出點列
,
, ,
, 向哪一點無限接近?說明理由;
(3)令,數(shù)列
的前
項和為
,設
,求所有可能的乘積
的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓的左、右焦點分別
為,其上頂點為
已知
是邊長為
的正三角形.
(1)求橢圓的方程;
(2)過點任作一動直線
交橢圓
于
兩點,記
.若在線段
上取一點
,使得
,當直線
運動時,點
在某一定直線上運動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)設,過點
作與
軸不重合的直線
交橢圓于
、
兩點,連結
、
分別交直線
于
、
兩點.試問直線
、
的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:(a>b>0),過點(0,1),且離心率為
.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線l:x=2與x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當點P在橢圓C上運動時,
恒為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,點是橢圓
的一個頂點,
的長軸是圓
的直徑,
、
是過點
且互相垂直的兩條直線,其中
交圓
于
、
兩點,
交橢圓
于另一點
.
(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com