已知曲線的方程為
,過原點(diǎn)作斜率為
的直線和曲線
相交,另一個(gè)交點(diǎn)記為
,過
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,過
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,如此下去,一般地,過點(diǎn)
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,設(shè)點(diǎn)
(
).
(1)指出,并求
與
的關(guān)系式(
);
(2)求(
)的通項(xiàng)公式,并指出點(diǎn)列
,
,
,向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列
的前
項(xiàng)和為
,試比較
與
的大小,并證明你的結(jié)論.
(1);(2)
,
;(3).
解析試題分析:(1)由于,點(diǎn)
,
又都是拋物線上的點(diǎn),代入進(jìn)去變形可得到
與
的關(guān)系為
;(2)由于只要求數(shù)列
的奇數(shù)項(xiàng),因此把(1)中得到的關(guān)系式中
分別為
代換,得到兩個(gè)等式相減可得
與
的關(guān)系式
,用累加法可求得通項(xiàng)公式
,當(dāng)
時(shí),
,即得極限點(diǎn)為
;(3)求出
,是一個(gè)等比數(shù)列,其
,于是
,要比較
與
的大小,只要比較
與
的即可,可計(jì)算前幾個(gè)數(shù)
,
時(shí),
,
時(shí),
,
時(shí),
,
時(shí),
,可以歸納出結(jié)論,
時(shí)有
,這個(gè)可用二項(xiàng)式定理證明,
,由于
,展開式中至少有4項(xiàng),因此
.
試題解析:(1). (1分)
設(shè),
,由題意得
. (2分)
(4分)
(2)分別用、
代換上式中的n得
(
) (6分)
又,
, (8分)
因,所以點(diǎn)列
,
, ,
, 向點(diǎn)
無限接近. (10分)
(3),
. (12分)
,只要比較
. (13分)
(15分)
當(dāng)n=1時(shí), (16分)
當(dāng)n=2時(shí), (17分)
當(dāng)n>2時(shí),.&nb
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),以
弦為直徑的圓過坐標(biāo)原點(diǎn)
,試探討點(diǎn)
到直線
的距離是否為定值?若是,求出這個(gè)定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)拋物線:
的焦點(diǎn)為
,準(zhǔn)線為
,過準(zhǔn)線
上一點(diǎn)
且斜率為
的直線
交拋物線
于
,
兩點(diǎn),線段
的中點(diǎn)為
,直線
交拋物線
于
,
兩點(diǎn).
(1)求拋物線的方程及
的取值范圍;
(2)是否存在值,使點(diǎn)
是線段
的中點(diǎn)?若存在,求出
值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)分別為
和
,離心率
.
(1)求橢圓的方程;
(2)設(shè)直線(
)與橢圓
交于
、
兩點(diǎn),線段
的垂直平分線交
軸于點(diǎn)
,當(dāng)
變化時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個(gè)頂點(diǎn),△
是一個(gè)邊長為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點(diǎn)是圓
劣弧
上一動(dòng)點(diǎn)(點(diǎn)
異于端點(diǎn)
,
),直線
分別交線段
,橢圓
于點(diǎn)
,
,直線
與
交于點(diǎn)
.
(ⅰ)求的最大值;
(ⅱ)試問:..,
兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的左、右焦點(diǎn)分別
為,其上頂點(diǎn)為
已知
是邊長為
的正三角形.
(1)求橢圓的方程;
(2)過點(diǎn)任作一動(dòng)直線
交橢圓
于
兩點(diǎn),記
.若在線段
上取一點(diǎn)
,使得
,當(dāng)直線
運(yùn)動(dòng)時(shí),點(diǎn)
在某一定直線上運(yùn)動(dòng),求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),圓C:
與橢圓E:
有一個(gè)公共點(diǎn)
,
分別是橢圓的左、右焦點(diǎn),直線
與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)
、
的距離之和為
,線段
的長為
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)過點(diǎn)作直線
與軌跡
交于
、
兩點(diǎn),且點(diǎn)
在線段
的上方,
線段的垂直平分線為
.
①求的面積的最大值;
②軌跡上是否存在除
、
外的兩點(diǎn)
、
關(guān)于直線
對(duì)稱,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點(diǎn),點(diǎn)A是長軸的一個(gè)端點(diǎn),BC過橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說明理由.
(3)過橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com