日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ln x-1.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)設(shè)m∈R,對(duì)任意的a∈(-1,1),總存在x0∈[1,e],使得不等式maf(x0)<0成立,求實(shí)數(shù)m的取值范圍.

          (1)單增區(qū)間是(1,+∞),單減區(qū)間是(0,1)(2)-m

          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個(gè)零點(diǎn),且1是其中一個(gè)零點(diǎn).
          (1)求b的值      (2)求f(2)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=axx2,g(x)=xln aa>1.
          (1)求證:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上單調(diào)遞增;
          (2)若函數(shù)y-3有四個(gè)零點(diǎn),求b的取值范圍;
          (3)若對(duì)于任意的x1,x2∈[-1,1]時(shí),都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù).
          (1)若曲線經(jīng)過(guò)點(diǎn),曲線在點(diǎn)處的切線與直線垂直,求的值;
          (2)在(1)的條件下,試求函數(shù)為實(shí)常數(shù),)的極大值與極小值之差;
          (3)若在區(qū)間內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是
          (1)求實(shí)數(shù)的值;
          (2)求在區(qū)間上的最大值;
          (3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (2013·重慶卷)設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
          (1)確定a的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=,x∈(1,+∞).
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若上是增函數(shù),求實(shí)數(shù)a的取值范圍;
          (Ⅱ)證明:當(dāng)a≥1時(shí),證明不等式≤x+1對(duì)x∈R恒成立;
          (Ⅲ)對(duì)于在(0,1)中的任一個(gè)常數(shù)a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請(qǐng)求出符合條件的一個(gè)x0;如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}.
          (1)求I的長(zhǎng)度(注:區(qū)間(αβ)的長(zhǎng)度定義為βα);
          (2)給定常數(shù)k∈(0,1),當(dāng)1-ka≤1+k時(shí),求I長(zhǎng)度的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案