【題目】甲、乙兩名大學(xué)生因為學(xué)習(xí)需要,欲各自選購一臺筆記本電腦,他們決定在A,B,C三個品牌的五款產(chǎn)品中選擇,這五款筆記本電腦在某電商平臺的價格與銷量數(shù)據(jù)如表所示:
品牌 | A | B | C | ||
型號 | A﹣1 | A﹣2 | B﹣1 | B﹣2 | C﹣1 |
價格(元) | 6000 | 7500 | 10000 | 8000 | 4500 |
銷量(臺) | 1000 | 1000 | 200 | 800 | 3000 |
(Ⅰ)若甲選擇某品牌的筆記本電腦的概率與該品牌的總銷量成正比,求他選擇B品牌的筆記本電腦的概率;
(Ⅱ)若甲、乙兩人選擇每種型號的筆記本電腦的概率都相等,且兩人選購的型號不相同,求他們兩人購買的筆記本電腦的價格之和大于15000元的概率.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由銷量比可設(shè)甲選擇B品牌的概率為p,則他選擇A品牌和C品牌的概率分別為2p,3p,再由概率和為1即可得解;
(Ⅱ)利用列舉法,借助于古典概型的計算公式求解即可.
(Ⅰ)根據(jù)題意,A,B,C三個品牌的總銷量分別為2000臺,1000臺,3000臺,銷量的比為2:1:3,
設(shè)甲選擇B品牌的概率為p,則他選擇A品牌和C品牌的概率分別為2p,3p,
由p+2p+3p=1,解得p=,
∴甲選擇B品牌的筆記本電腦的概率為.
(Ⅱ)甲、乙兩人從五款筆記本電腦中各任選一臺,價格有20種情況,分別為:
(6000,7500),(6000,10000),(6000,8000),(6000,4500),(7500,6000),
(7500,10000),(7500,8000),(7500,4500),(10000,6000),(10000,7500),
(10000,8000),(10000,4500),(8000,6000),(8000,7500),(8000,10000),
(8000,4500),(4500,6000),(4500,7500),(4500,10000),(4500,80000).
設(shè)“他們兩人購買的筆記本電腦的價格之和大于15000元”為事件M,
則事件M包含的情況有8種,分別為:
(6000,10000),(10000,6000),(7500,10000),(10000,7500),
(7500,8000),(8000,7500),(8000,10000),(10000,8000),
∴他們兩人購買的筆記本電腦的價格之和大于15000元的概率:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家提出的“六藝”指:禮樂射御書數(shù).某校國學(xué)社團預(yù)在周六開展“六藝”課程講座活動,周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“樂”與“書”不能相鄰,“射”和“御”要相鄰,則針對“六藝”課程講座活動的不同排課順序共有( )
A.18種B.36種C.72種D.144種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐中,
與
都是邊長為2的等邊三角形,
是側(cè)棱
的中點,過點
作平行于
、
的平面分別交棱
、
、
于點
、
、
.
(1)證明:四邊形為矩形;
(2)若平面平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線
的左、右焦點分別為
,過
作傾斜角為
的直線與
軸和雙曲線的右支分別交于
兩點,若點
平分線段
,則該雙曲線的離心率是( )
A. B.
C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2
,左頂點與上頂點連線的斜率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點,當(dāng)|MN|的值最大時,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
,
,
為
的零點:且
恒成立,
在區(qū)間
上有最小值無最大值,則
的最大值是( )
A. 11B. 13C. 15D. 17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱的底面為菱形,
底面
,
,
,
,
分別為
,
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com