日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).

          1)若,求函數(shù)在區(qū)間上的最大值;

          2)若,關(guān)于的方程有且僅有一個根, 求實數(shù)的取值范圍;

          3)若對任意,不等式均成立, 求實數(shù)的取值范圍.

          【答案】1;(2;(3.

          【解析】試題()求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;()若a=-1,關(guān)于x的方程fx=kgx)有且僅有一個根,即,有且只有一個根,令,可得hx)極大=h2=,hx)極小=h1=,進而可得當(dāng)k0k時,k=hx)有且只有一個根;()設(shè),因為[0,2]單調(diào)遞增,故原不等式等價于|fx1-fx2|gx2-gx1)在x1、x2∈[0,2],且x1x2恒成立,當(dāng)a≥-ex+2x)恒成立時,a≥-1;當(dāng)a≤ex-2x恒成立時,a≤2-2ln2,綜合討論結(jié)果,可得實數(shù)a的取值范圍

          試題解析:(1)當(dāng),, 上單調(diào)遞減,上單調(diào)遞增, 當(dāng),, 當(dāng),, 故在區(qū)間

          2)當(dāng), 關(guān)于的方程為有且僅有一個實根, 有且僅有一個實根, 設(shè),,

          因此上單調(diào)遞減, 上單調(diào)遞增,, 如圖所示, 實數(shù)的取值范圍是

          3)不妨設(shè),恒成立.

          因此恒成立, 恒成立,

          恒成立, 因此均在上單調(diào)遞增,

          設(shè),

          在上上恒成立, 因此上恒成立因此,上單調(diào)遞減, 因此,.由上恒成立, 因此上恒成立, 因此,設(shè),.當(dāng),, 因此內(nèi)單調(diào)遞減, 內(nèi)單調(diào)遞增,因此.綜上述,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng)時,求曲線在點處的切線方程;

          (2)求函數(shù)的單調(diào)區(qū)間;

          (3)當(dāng)時,求函數(shù)在上區(qū)間零點的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題p曲線C1=1表示焦點在x軸上的橢圓,命題q曲線C2表示雙曲線

          1)若命題p是真命題,求m的取值范圍;

          2)若pq的必要不充分條件,求t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點,點為拋物線上一點,且不在直線上,則周長取最小值時,線段的長為( )

          A. 1B. C. 5D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)

          討論的單調(diào)區(qū)間;

          當(dāng)時,上的最小值為,求上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2lnx﹣2mx+x2(m>0).

          (1)討論函數(shù)f(x)的單調(diào)性;

          (2)當(dāng)時,若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象與x軸交于A,B兩點,其橫坐標分別為x1,x2(x1<x2),線段AB的中點的橫坐標為x0,且x1,x2恰為函數(shù)h(x)=lnx﹣cx2﹣bx的零點.求證(x1﹣x2)h'(x0)≥+ln2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出以下四個命題:

          1命題,使得,則,都有;

          2)已知函數(shù)f(x)|log2x|ab,f(a)f(b),ab1

          3若平面α內(nèi)存在不共線的三點到平面β的距離相等,則平面α平行于平面β;

          4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點對稱

          其中真命題的序號為______________.(寫出所有真命題的序號)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線

          1)若直線不經(jīng)過第四象限,求的取值范圍;

          2)若直線軸負半軸于點,交軸正半軸于點為坐標原點,設(shè)的面積為,求的最小值及此時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實驗地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為及以上的花苗為優(yōu)質(zhì)花苗.

          求圖中的值,并求綜合評分的中位數(shù).

          用樣本估計總體,以頻率作為概率,若在兩塊試驗地隨機抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

          填寫下面的列聯(lián)表,并判斷是否有的把握認為優(yōu)質(zhì)花苗與培育方法有關(guān).

          附:下面的臨界值表僅供參考.

          (參考公式:,其中.)

          查看答案和解析>>

          同步練習(xí)冊答案