【題目】如圖1,直線將矩形紙
分為兩個(gè)直角梯形
和
,將梯形
沿邊
翻折,如圖2,在翻折的過(guò)程中(平面
和平面
不重合),下面說(shuō)法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過(guò)程中,平面
恒成立
D.在翻折的過(guò)程中,平面
恒成立
【答案】C
【解析】
因?yàn)?/span>與
相交,所以
與平面
相交,故A錯(cuò)誤.
在任何位置都不垂直于
,如果“存在某一位置,使得
平面
”,則存在某一位置,使得
,兩者矛盾,故B錯(cuò)誤.
在任何位置都不垂直于
,如果“在翻折的過(guò)程中,
平面
恒成立”,那么
恒成立,兩者矛盾,故D錯(cuò)誤.
由題意知與
不平行,且在同一平面內(nèi).
所以,與
相交,所以
與平面
相交,故A錯(cuò)誤.
在任何位置都不垂直于
,如果“存在某一位置,使得
平面
”,則存在某一位置,使得
,兩者矛盾,故B錯(cuò)誤.
在任何位置都不垂直于
,如果“在翻折的過(guò)程中,
平面
恒成立”,那么
恒成立,兩者矛盾,故D錯(cuò)誤.
綜上,選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有以下三個(gè)結(jié)論:
①函數(shù)恒有兩個(gè)零點(diǎn),且兩個(gè)零點(diǎn)之積為;
②函數(shù)的極值點(diǎn)不可能是;
③函數(shù)必有最小值.
其中正確結(jié)論的個(gè)數(shù)有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
過(guò)點(diǎn)
,過(guò)坐標(biāo)原點(diǎn)
作兩條互相垂直的射線與橢圓
分別交于
,
兩點(diǎn).
(1)證明:當(dāng)取得最小值時(shí),橢圓
的離心率為
.
(2)若橢圓的焦距為2,是否存在定圓與直線
總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間
上是單調(diào)函數(shù),試求
的取值范圍;
(2)若函數(shù)在區(qū)間
上恰有3個(gè)零點(diǎn),且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面是菱形的四棱柱中,
,
,
,點(diǎn)
在
上.
(1)證明:平面
;
(2)當(dāng)為何值時(shí),
平面
,并求出此時(shí)直線
與平面
之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐中,
兩兩垂直,
,
,
分別是
的中點(diǎn).
(1)證明:平面面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為
則該三棱錐外接球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:,直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
若
,點(diǎn)K在橢圓E上,
、
分別為橢圓的兩個(gè)焦點(diǎn),求
的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過(guò)點(diǎn)
,射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(
為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)在定義域內(nèi)極值點(diǎn)的個(gè)數(shù);
(2)設(shè)直線為函數(shù)
的圖象上一點(diǎn)
處的切線,證明:在區(qū)間
上存在唯一的
,使得直線
與曲線
相切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com