日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知四棱錐P﹣ABCD,底面ABCD是∠A=60°、邊長(zhǎng)為a的菱形,又PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).

          (1)證明:DN∥平面PMB;
          (2)證明:平面PMB⊥平面PAD;
          (3)求點(diǎn)A到平面PMB的距離.

          【答案】
          (1)證明:取PB中點(diǎn)Q,連接MQ、NQ,

          因?yàn)镸、N分別是棱AD、PC中點(diǎn),

          所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.

          DN∥平面PMB


          (2)解: PD⊥MB

          又因?yàn)榈酌鍭BCD是∠A=60°、邊長(zhǎng)為a的菱形,且M為AD中點(diǎn),

          所以MB⊥AD.

          又AD∩PD=D,

          所以MB⊥平面PAD. 平面PMB⊥平面PAD


          (3)解:因?yàn)镸是AD中點(diǎn),所以點(diǎn)A與D到平面PMB等距離.

          過點(diǎn)D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB.

          故DH是點(diǎn)D到平面PMB的距離.

          ∴點(diǎn)A到平面PMB的距離為


          【解析】(1)取PB中點(diǎn)Q,連接MQ、NQ,再加上QN∥BC∥MD,且QN=MD,于是DN∥MQ,再利用直線與平面平行的判定定理進(jìn)行證明,即可解決問題;(2)易證PD⊥MB,又因?yàn)榈酌鍭BCD是∠A=60°、邊長(zhǎng)為a的菱形,且M為AD中點(diǎn),然后利用平面與平面垂直的判定定理進(jìn)行證明;(3)因?yàn)镸是AD中點(diǎn),所以點(diǎn)A與D到平面PMB等距離,過點(diǎn)D作DH⊥PM于H,由(2)平面PMB⊥平面PAD,所以DH⊥平面PMB,DH是點(diǎn)D到平面PMB的距離,從而求解.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和平面與平面垂直的判定的相關(guān)知識(shí)可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 =(1,0), =(m,1),且 的夾角為
          (1)求| ﹣2 |;
          (2)若( )與 垂直,求實(shí)數(shù)λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
          (1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?

          非讀書迷

          讀書迷

          合計(jì)

          15

          45

          合計(jì)


          (2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

          P(K2≥k0

          0.100

          0.050

          0.025

          0.010

          0.001

          k0

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=x( + ),
          (1)試判斷f(x)的奇偶性,
          (2)求證f(x)>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
          (Ⅰ)a和c的值;
          (Ⅱ)cos(B﹣C)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將直線2x﹣y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x﹣4y=0相切,則實(shí)數(shù)λ的值為(
          A.﹣3或7
          B.﹣2或8
          C.0或10
          D.1或11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在Rt△ABC中,已知A(﹣2,0),直角頂點(diǎn)B(0,﹣2 ),點(diǎn)C在x軸上.
          (Ⅰ)求Rt△ABC外接圓的方程;
          (Ⅱ)求過點(diǎn)(﹣4,0)且與Rt△ABC外接圓相切的直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定義在[a﹣6,2a]上的奇函數(shù),若 ,則g(1)=(
          A.0
          B.﹣3
          C.1
          D.﹣1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中, ,
          (1)用 , 表示 ;
          (2)若 , ,求證:
          (3)若 ,求 的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案