日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (13分)已知數(shù)列的前項和為,且.
          (1) 求證:為等差數(shù)列;  (2)求;  (3)若, 求
          (Ⅰ)略   (Ⅱ)   (Ⅲ)1
          :(1)當時,由已知有 易知
             ∴為首項為2,公差為2的等差數(shù)列.
          (2)易知,當時,  ∴
          (3)易知,.   ∴
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          定義數(shù)列如下:
          證明:(1)對于恒有成立。
          (2)當,有成立。
          (3)。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          數(shù)列{an}的通項公式為an=2n-49,Sn達到最小時,n等于_______________.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          設{an}是遞增等差數(shù)列,前三項的和是12,前三項的積為48,則它的首項是
          A.1B.2C.4D.6

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)奇函數(shù),且當時,有最小值,又.(1)求的表達式;
          (2)設,正數(shù)數(shù)列中,,,求數(shù)列的通項公式;
          (3)設,數(shù)列,.是否存在常數(shù)使對任意恒成立.若存在,求的取值范圍,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知,,數(shù)列滿足

          (I)求證:數(shù)列是等比數(shù)列;
          (II)若對任意恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知數(shù)列滿足
          (I)證明:數(shù)列是等比數(shù)列;     (II)求數(shù)列的通項公式;
          (II)若數(shù)列滿足證明是等差數(shù)

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知各項均為正數(shù)的數(shù)列滿足其中n=1,2,3,….
          (1)求的值;
          (2)求證:;
          (3)求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知數(shù)列中,,求數(shù)列的通項公式.

          查看答案和解析>>

          同步練習冊答案