【題目】若存在常數(shù) k(k∈N * , k≥2)、d、t( d , t∈R),使得無窮數(shù)列 {a n }滿足a n +1,則稱數(shù)列{an }為“段差比數(shù)列”,其中常數(shù) k、d、t 分別叫做段長、段差、段比.設(shè)數(shù)列 {bn }為“段差比數(shù)列”.
(1)已知 {bn }的首項、段長、段差、段比分別為1、 2 、 d 、 t .若 {bn }是等比數(shù)列,求 d 、 t 的值;
(2)已知 {bn }的首項、段長、段差、段比分別為1、3 、3 、1,其前 3n 項和為 S3n .若不等式 S3n≤ λ 3n1對 n ∈ N *恒成立,求實數(shù) λ 的取值范圍;
(3)是否存在首項為 b,段差為 d(d ≠ 0 )的“段差比數(shù)列” {bn },對任意正整數(shù) n 都有 bn+6 = bn ,若存在, 寫出所有滿足條件的 {bn }的段長 k 和段比 t 組成的有序數(shù)組 (k, t );若不存在,說明理由.
【答案】(1)或
(2)
(3)
,
,
,
【解析】
(1)的前4項依次為1,
,
,
,先求出
,再代入驗證,可得結(jié)論;
(2)由的首項、段長、段比、段差,
,
是等差數(shù)列,又
,即可求
,從而求實數(shù)
的取值范圍;
(3)取2,3,4時存在,有序數(shù)組可以是
,
,
,
.
解:(1)的前4項依次為1,
,
,
,
由前三項成等比數(shù)列得,
,
,
那么第2,3,4項依次為,
,
,
,
.
時,
,
,滿足題意;
時,
,
,滿足題意;
(2)的首項、段長、段比、段差分別為1、3、1、3,
,
是以
為首項、6為公差的等差數(shù)列,
又,
,
,
,
設(shè),則
,
又,
當(dāng)時,
,
;當(dāng)
時,
,
,
,
,
,得
,
.
(3)取2,3,4時存在,有序數(shù)組可以是
,
,
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過
和不超過
的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部,則不同的分配方案共有( )
A.2640種B.4800種C.1560種D.7200種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沿海特區(qū)為了緩解建設(shè)用地不足的矛盾,決定進(jìn)行圍海造陸以增加陸地面積.如圖,兩海岸線,
所成角為
,現(xiàn)欲在海岸線
,
上分別取點
,
修建海堤,以便圍成三角形陸地
,已知海堤
長為6千米.
(1)如何選擇,
的位置,使得
的面積最大;
(2)若需要進(jìn)一步擴(kuò)大圍海造陸工程,在海堤的另一側(cè)選取點
,修建海堤
,
圍成四邊形陸地.當(dāng)海堤
與
的長度之和為10千米時,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是( )
A.若α⊥β , β⊥γ ,則α∥γ
B.若 ,
, m∥n ,則α∥β
C.若 m、n 是異面直線, , m∥β ,
, n∥α ,則α∥β
D.平面α內(nèi)有不共線的三點到平面 β的距離相等,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),如果存在給定的實數(shù)對
,使得
恒成立,則稱
為“
函數(shù)”.
(1) 判斷函數(shù)是否是“
函數(shù)”;
(2) 若是一個“
函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對
;
(3) 若定義域為R的函數(shù)是“
函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(0,1)和(1,4),當(dāng)x[0,1]時,
的值域為[1,2],求當(dāng)x[2016,2016]時函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】巳知函數(shù),
,其中
.
(1)若是函數(shù)
的極值點,求
的值;
(2)若在區(qū)間
上單調(diào)遞增,求
的取值范圍;
(3)記,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點( 。
A. 向右平移個單位長度 B. 向左平移
個單位長度
C. 向右平移個單位長度 D. 向左平移
個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形.
若在圖④中隨機(jī)選。c,則此點取自陰影部分的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com