【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為
(
為參數(shù)),點
是曲線
上的一動點,以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的方程為
.
(Ⅰ)求線段的中點
的軌跡的極坐標(biāo)方程;
(Ⅱ)求曲線上的點到直線
的距離的最大值.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析:(1)由中點坐標(biāo)公式得到M點坐標(biāo)為,消參得到直角坐標(biāo),再化為極坐標(biāo)方程;(2)寫出直線的直角坐標(biāo)方程,轉(zhuǎn)化為圓心到直線的距離加減半徑。
解析:
(Ⅰ)設(shè)線段的中點
的坐標(biāo)為
,
由中點坐標(biāo)公式得(
為參數(shù)),
消去參數(shù)得的軌跡的直角坐標(biāo)方程為
,
由互化公式可得點的軌跡的極坐標(biāo)方程為
.
(Ⅱ)由直線的極坐標(biāo)方程為
,得
,
所以直線的直角坐標(biāo)方程為
,
曲線的普通方程為
,它表示以
為圓心,2為半徑的圓,
則圓心到直線的距離為
,所以直線
與圓相離,
故曲線上的點到直線
的距離的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),在以原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的傾斜角;
(2)設(shè)點和
交于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是
,以極點為平面直角坐標(biāo)系的原點,極軸為
軸的正半軸,建立平面直角坐標(biāo)系,直線
的參數(shù)方程是
(
為參數(shù)).
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線與曲線
相交于
兩點,且
,求直線
的傾斜角
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若存在兩條直線,
都是曲線
的切線,求實數(shù)
的取值范圍;
(Ⅲ)若,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)當(dāng)p=3時,若數(shù)列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,將曲線
向左平移
個單位長度得到曲線
.
(1)求曲線的參數(shù)方程;
(2)已知為曲線
上的動點,
兩點的極坐標(biāo)分別為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:
(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿作了統(tǒng)計,得到如下數(shù)據(jù)分布:
若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為
,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?
附:
| ||||
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com