【題目】如圖1,菱形中,
,
,
于
.將
沿
翻折到
,使
,如圖2.
(Ⅰ)求證:平面平面
;
(Ⅱ)求直線A′E與平面A′BC所成角的正弦值;
(Ⅲ)設(shè)為線段
上一點(diǎn),若
平面
,求
的值.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ);(Ⅲ)1
【解析】
(Ⅰ)證明DE⊥AE,DE⊥EB.A′E⊥DE.結(jié)合A′E⊥BE,證明A′E⊥平面BCDE.然后證明平面A′ED⊥平面BCDE;(Ⅱ)建立空間直角坐標(biāo)系E﹣xyz,求出平面A′BC的法向量,利用空間向量的數(shù)量積求解直線A′E與平面A′BC所成角的正弦值;(Ⅲ)設(shè) ,通過(guò)EF∥平面A′BC,所以
,求出m,然后推出結(jié)果即可.
(Ⅰ)在菱形中,因?yàn)?/span>
,所以
,
.
所以.因?yàn)?/span>
,
,
平面
,
平面
,
所以平面
.因?yàn)?/span>
平面
,
所以平面⊥平面
.
(Ⅱ)由(Ⅰ)知,
,
,如圖建立空間直角坐標(biāo)系
,
則 ,
,
,
,
,
所以,
,
.
設(shè)平面的法向量
,由
得所以
令
,則
.所以
.
所以,又
,
,
所以.
所以直線與平面
所成角的正弦值為
.
(Ⅲ)由(Ⅱ)可知,,
設(shè),則
.
因?yàn)?/span> 平面
,所以
,即
.
所以,即
.所以
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于項(xiàng)數(shù)為(
)的有窮正整數(shù)數(shù)列
,記
(
),即
為
中的最大值,稱數(shù)列
為數(shù)列
的“創(chuàng)新數(shù)列”.比如
的“創(chuàng)新數(shù)列”為
.
(1)若數(shù)列的“創(chuàng)新數(shù)列”
為1,2,3,4,4,寫(xiě)出所有可能的數(shù)列
;
(2)設(shè)數(shù)列為數(shù)列
的“創(chuàng)新數(shù)列”,滿足
(
),求證:
(
);
(3)設(shè)數(shù)列為數(shù)列
的“創(chuàng)新數(shù)列”,數(shù)列
中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌服裝店為了慶祝開(kāi)業(yè)兩周年,特舉辦“你敢買,我就送”的回饋活動(dòng),規(guī)定店慶當(dāng)日進(jìn)店購(gòu)買指定服裝的消費(fèi)者可參加游戲,贏取獎(jiǎng)金,游戲分為以下兩種:
游戲 1:參加該游戲贏取獎(jiǎng)金的成功率為,成功后可獲得
元獎(jiǎng)金;
游戲 2:參加該游戲贏取獎(jiǎng)金的成功率為,成功后可得
元獎(jiǎng)金;
無(wú)論參與哪種游戲,未成功均沒(méi)有收獲,每人有且僅有一次機(jī)會(huì),且每次游戲成功與否均互不影響,游戲結(jié)束后可到收銀臺(tái)領(lǐng)取獎(jiǎng)金。
(Ⅰ)已知甲參加游戲 1,乙參加游戲 2,記甲與乙獲得的總獎(jiǎng)金為,若
,求
的值;
(Ⅱ)若甲、乙、丙三人都選擇游戲 1或都選擇游戲 2,問(wèn):他們選擇何種規(guī)則,累計(jì)得到獎(jiǎng)金的數(shù)學(xué)期望值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)
處的切線方程為
。我們將其結(jié)論推廣:橢圓
上的點(diǎn)
處的切線方程為
,在解本題時(shí)可以直接應(yīng)用。已知,直線
與橢圓
有且只有一個(gè)公共點(diǎn).
(1)求的值;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)橢圓
上的兩點(diǎn)
、
分別作該橢圓的兩條切線
、
,且
與
交于點(diǎn)
。當(dāng)
變化時(shí),求
面積的最大值;
(3)在(2)的條件下,經(jīng)過(guò)點(diǎn)作直線
與該橢圓
交于
、
兩點(diǎn),在線段
上存在點(diǎn)
,使
成立,試問(wèn):點(diǎn)
是否在直線
上,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)時(shí),
(ⅰ)求的單調(diào)區(qū)間;
(ⅱ)若在區(qū)間
內(nèi)單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為
,離心率為
,過(guò)焦點(diǎn)
且垂直于
軸的直線被橢圓
截得的線段長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)為橢圓
上一動(dòng)點(diǎn),連接
、
,設(shè)
的角平分線
交橢圓
的長(zhǎng)軸于點(diǎn)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是一個(gè)各位數(shù)字都不是0且沒(méi)有重復(fù)數(shù)字的三位數(shù),將組成
的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為
,按從大到小排成的三位數(shù)記為
,(例如
,則
,
)閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)
,輸出的結(jié)果
=( )
A. 693 B. 594 C. 495 D. 792
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com