日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線內(nèi)有一點(diǎn),過的兩條直線,分別與拋物線交于,兩點(diǎn),且滿足,,已知線段的中點(diǎn)為,直線的斜率為.

          (1)求證:點(diǎn)的橫坐標(biāo)為定值;

          (2)如果,點(diǎn)的縱坐標(biāo)小于3,求的面積的最大值.

          【答案】(1)見證明;(2)

          【解析】

          (1)設(shè)中點(diǎn)為,根據(jù)向量的線性運(yùn)算可知,且,三點(diǎn)共線,利用點(diǎn)差法可得,即,可知軸,故為定值(2)得到,設(shè),,聯(lián)立直線與拋物線方程可求,寫出面積公式即可求最值.

          (1)設(shè)中點(diǎn)為,則由,可推得,,這說明,且,三點(diǎn)共線.

          對(duì),使用點(diǎn)差法,可得,即.

          同理.

          于是,即軸,所以為定值.

          (2)由得到,設(shè),,聯(lián)立

          ,所以,,

          根據(jù)點(diǎn)到直線的距離公式知P到AB的距離為,

          于是,令x=,則,

          ,令,當(dāng)時(shí), ,函數(shù)為增函數(shù),當(dāng)時(shí),,函數(shù)為減函數(shù),故當(dāng),即時(shí),有最大值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,平面ABCD,底面ABCD是正方形,,EPC上一點(diǎn),當(dāng)FDC的中點(diǎn)時(shí),EF平行于平面PAD.

          (Ⅰ)求證:平面PCB;

          (Ⅱ)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線經(jīng)過點(diǎn).

          1)寫出拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程,并求拋物線的焦點(diǎn)到準(zhǔn)線的距離;

          2)過點(diǎn)且斜率存在的直線與拋物線交于不同的兩點(diǎn),,且點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線軸交于點(diǎn).

          i)求點(diǎn)的坐標(biāo);

          ii)求面積之和的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年上半年我國(guó)多個(gè)省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問題,我國(guó)政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國(guó)家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場(chǎng)供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場(chǎng)形勢(shì),決定響應(yīng)政府號(hào)召,擴(kuò)大生產(chǎn),決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:

          生豬存欄數(shù)量(千頭)

          2

          3

          4

          5

          8

          頭豬每天平均成本(元)

          3.2

          2.4

          2

          1.9

          1.5

          1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為具有線性回歸關(guān)系,請(qǐng)幫他求出關(guān)于的線性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)

          2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評(píng)價(jià)兩種模型的擬合結(jié)果,請(qǐng)完成以下任務(wù):

          ①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);

          生豬存欄數(shù)量(千頭)

          2

          3

          4

          5

          8

          頭豬每天平均成本(元)

          3.2

          2.4

          2

          1.9

          1.5

          模型甲

          估計(jì)值

          殘差

          模型乙

          估計(jì)值

          3.2

          2.4

          2

          1.76

          1.4

          殘差

          0

          0

          0

          0.14

          0.1

          ②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個(gè)模型擬合效果更好;

          3)根據(jù)市場(chǎng)調(diào)查,生豬存欄數(shù)量達(dá)到1萬(wàn)頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬(wàn)頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2.若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬(wàn)頭還是1.2萬(wàn)頭能獲得更多利潤(rùn)?請(qǐng)說明理由.(利潤(rùn)=收入-成本)

          參考公式:,

          參考數(shù)據(jù): .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)是常數(shù)).

          1)若,求函數(shù)的值域;

          2)若為奇函數(shù),求實(shí)數(shù).并證明的圖像始終在的圖像的下方;

          3)設(shè)函數(shù),若對(duì)任意,以為邊長(zhǎng)總可以構(gòu)成三角形,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說:“是作品獲得一等獎(jiǎng)”;

          乙說:“作品獲得一等獎(jiǎng)”;

          丙說:“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說:“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的焦距為,且橢圓過點(diǎn),直線與圓: 相切,且與橢圓相交于兩點(diǎn).

          1)求橢圓的方程;

          2)求三角形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】.華為公司研發(fā)的5G技術(shù)是中國(guó)在高科技領(lǐng)域的重大創(chuàng)新,目前處于世界領(lǐng)先地位,今年即將投入使用,它必將為人們生活帶來別樣的精彩,成為每個(gè)中國(guó)人的驕傲.現(xiàn)假設(shè)在一段光纖中有條通信線路,需要輸送種數(shù)據(jù)包,每條線路單位時(shí)間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時(shí)間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號(hào)是_______.

          ①甲線路只能輸送第四種數(shù)據(jù)包;

          ②乙線路不能輸送第二種數(shù)據(jù)包;

          ③丙線路可以不輸送第三種數(shù)據(jù)包;

          ④丁線路可以輸送第三種數(shù)據(jù)包;

          ⑤戊線路只能輸送第四種數(shù)據(jù)包.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          (1)討論的單調(diào)性;

          (2)若有三個(gè)不同的零點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案