日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:函數(shù).

          (1)此函數(shù)在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

          (2)在(1)的條件下,若,恒成立,求的最大值.

          【答案】(1); (2)3.

          【解析】

          1)對(duì)函數(shù)進(jìn)行求導(dǎo),求出在點(diǎn)處切線的斜率,求出直線的斜率,根據(jù)兩直線平行,得到等式,求出實(shí)數(shù)的值。

          (2)方法一:在條件下,先取特殊值滿足不等式,求出的最大值,再證明當(dāng)時(shí),不等式恒成立;

          方法二:當(dāng)時(shí),恒成立,轉(zhuǎn)化為對(duì)恒成立,求的最小值大于.通過(guò)二次求導(dǎo)法,求出的最小值的取值范圍,最后求出的最大值。

          (1)

          點(diǎn)處的切線與直線平行

          (2)法一:當(dāng)時(shí),恒成立,

          ,有,

          為正整數(shù),的最大值不大于.

          下面證明當(dāng)時(shí),恒成立,

          即證當(dāng)時(shí),恒成立.

          ,

          ,當(dāng)時(shí),

          當(dāng)時(shí),當(dāng)時(shí),

          取得極小值.

          當(dāng)時(shí),恒成立.

          法二:當(dāng)時(shí),恒成立,

          對(duì)恒成立.

          的最小值大于.

          ,上連續(xù)遞增,

          ,

          存在唯一實(shí)根,且滿足:,

          時(shí),,;

          時(shí),,知;

          的最小值為

          的最大值為3, 的最大值為3.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是一種加熱食物的太陽(yáng)灶,上面裝有可旋轉(zhuǎn)的拋物面形的反光鏡,鏡的軸截面是拋物線的一部分,盛食物的容器放在拋物線的焦點(diǎn)處,容器由若干根等長(zhǎng)的鐵筋焊接在一起的架子支撐.已知鏡口圓的直徑為8m,鏡深1m

          1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線的方程和焦點(diǎn)的位置;

          2)若把盛水和食物的容器近似地看作點(diǎn),試求每根鐵筋的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)為曲線的一個(gè)焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上任意一點(diǎn),過(guò)點(diǎn)軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點(diǎn).

          (Ⅰ)求拋物線的方程;

          (Ⅱ)若、三個(gè)點(diǎn)滿足,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問(wèn)題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

          (1)求出的值;

          (2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);

          (3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,求這2組恰好抽到2人的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,平面平面 , , ,

          )求證:

          )求二面角的余弦值;

          (Ⅲ)若點(diǎn)在棱上,且平面,求線段的長(zhǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知, 是橢圓的左右焦點(diǎn), 為橢圓的上頂點(diǎn),點(diǎn)在橢圓上,直線軸的交點(diǎn)為, 為坐標(biāo)原點(diǎn),且

          (1)求橢圓的方程;

          (2)過(guò)點(diǎn)作兩條互相垂直的直線分別與橢圓交于, 兩點(diǎn)(異于點(diǎn)),證明:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f '(x)的圖象如圖所示,f(-1)=f(2)=3,g(x)=(x-1)f(x),則不等式g(x)≥3x-3的解集是( )

          A. [-1,1][2,+∞)B. (-∞,-1][1,2]

          C. (-∞,-1][2,+∞)D. [-1,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C.

          1)求圓C的方程;

          2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2022年第24屆冬奧會(huì)將在北京舉行。為了推動(dòng)我國(guó)冰雪運(yùn)動(dòng)的發(fā)展,京西某區(qū)興建了“騰越冰雪運(yùn)動(dòng)基地。通過(guò)對(duì)來(lái)“騰越參加冰雪運(yùn)動(dòng)的100員運(yùn)動(dòng)員隨機(jī)抽樣調(diào)查,他們的身份分布如下: 注:將表中頻率視為概率

          身份

          小學(xué)生

          初中生

          高中生

          大學(xué)生

          職工

          合計(jì)

          人數(shù)

          40

          20

          10

          20

          10

          100

          對(duì)10名高中生又進(jìn)行了詳細(xì)分類如下表:

          年級(jí)

          高一

          高二

          高三

          合計(jì)

          人數(shù)

          4

          4

          2

          10

          (1)求來(lái)“騰越參加冰雪運(yùn)動(dòng)的人員中高中生的概率;

          (2)根據(jù)統(tǒng)計(jì),春節(jié)當(dāng)天來(lái)“騰越”參加冰雪運(yùn)動(dòng)的人員中,小學(xué)生是340人,估計(jì)高中生是多少人?

          (3)在上表10名高中生中,從高二,高三6名學(xué)生中隨機(jī)選出2人進(jìn)行情況調(diào)查,至少有一名高三學(xué)生的概率是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案