日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.

          (1)證明PA∥平面EDB;
          (2)證明PB⊥平面EFD;
          (3)求二面角C﹣PB﹣D的大。

          【答案】
          (1)解:方法一:證明:連接AC,AC交BD于O,連接EO.

          ∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn)

          在△PAC中,EO是中位線,∴PA∥EO

          而EO平面EDB且PA平面EDB,

          所以,PA∥平面EDB

          方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)DC=a.

          證明:連接AC,AC交BD于G,連接EG.

          依題意得

          ∵底面ABCD是正方形,∴G是此正方形的中心,故點(diǎn)G的坐標(biāo)為

          ,這表明PA∥EG.

          而EG平面EDB且PA平面EDB,∴PA∥平面EDB


          (2)解:方法一,證明:

          ∵PD⊥底面ABCD且DC底面ABCD,∴PD⊥DC

          ∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,

          ∴DE⊥PC.①

          同樣由PD⊥底面ABCD,得PD⊥BC.

          ∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.

          而DE平面PDC,∴BC⊥DE.②

          由①和②推得DE⊥平面PBC.

          而PB平面PBC,∴DE⊥PB

          又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD

          方法二:證明;依題意得B(a,a,0),

          ,故

          ∴PB⊥DE.

          由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD


          (3)解:方法一:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.

          由(2)知,DE⊥EF,PD⊥DB.

          設(shè)正方形ABCD的邊長為a,

          ,

          在Rt△PDB中,

          在Rt△EFD中, ,∴

          所以,二面角C﹣PB﹣D的大小為

          方法二:解:設(shè)點(diǎn)F的坐標(biāo)為(x0,y0,z0), ,則(x0,y0,z0﹣a)=λ(a,a,﹣a).

          從而x0=λa,y0=λa,z0=(1﹣λ)a.所以

          由條件EF⊥PB知, ,即 ,解得

          ∴點(diǎn)F的坐標(biāo)為 ,且 ,

          即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.

          ,且 ,

          所以,二面角C﹣PB﹣D的大小為


          【解析】法一:(1)連接AC,AC交BD于O,連接EO要證明PA∥平面EDB,只需證明直線PA平行平面EDB內(nèi)的直線EO;(2)要證明PB⊥平面EFD,只需證明PB垂直平面EFD內(nèi)的兩條相交直線DE、EF,即可;(3)必須說明∠EFD是二面角C﹣PB﹣D的平面角,然后求二面角C﹣PB﹣D的大。ǘ喝鐖D所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)DC=a.(1)連接AC,AC交BD于G,連接EG,求出 ,即可證明PA∥平面EDB;(2)證明EF⊥PB, ,即可證明PB⊥平面EFD;(3)求出 ,利用 ,求二面角C﹣PB﹣D的大。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)判斷函數(shù)f(x)的奇偶性;
          (2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2017年年底,某商業(yè)集團(tuán)根據(jù)相關(guān)評(píng)分標(biāo)準(zhǔn),對(duì)所屬20家商業(yè)連鎖店進(jìn)行了年度考核評(píng)估,并依據(jù)考核評(píng)估得分(最低分60分,最高分100分)將這些連鎖店分別評(píng)定為A,B,CD四個(gè)類型,其考核評(píng)估標(biāo)準(zhǔn)如下表:

          評(píng)估得分

          [60,70

          [70,80

          [80,90

          [90,100]

          評(píng)分類型

          D

          C

          B

          A

          考核評(píng)估后,對(duì)各連鎖店的評(píng)估分?jǐn)?shù)進(jìn)行統(tǒng)計(jì)分析,得其頻率分布直方圖如下:

          Ⅰ)評(píng)分類型為A的商業(yè)連鎖店有多少家;

          Ⅱ)現(xiàn)從評(píng)分類型為A,D的所有商業(yè)連鎖店中隨機(jī)抽取兩家做分析,求這兩家來自同一評(píng)分類型的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:

          觀察圖形,回答下列問題:

          (1)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績的中位數(shù);

          (2)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有下列命題:
          ①乘積(a+b+c+d)(p+q+r)(m+n)展開式的項(xiàng)數(shù)是24;
          ②由1、2、3、4、5組成沒有重復(fù)數(shù)字且1、2都不與5相鄰的五位數(shù)的個(gè)數(shù)是36;
          ③某會(huì)議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為24;
          ④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇數(shù)的個(gè)數(shù)為2.
          其中真命題的序號(hào)是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

          2)若存在,使成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給定兩個(gè)長度為1的平面向量 ,它們的夾角為120°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧 上變動(dòng).若 ,其中x,y∈R,試求x+y的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為預(yù)防H1N1病毒暴發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒有通過),公司選定2000個(gè)流感樣本分成三組,測(cè)試結(jié)果如表:

          A組

          B組

          C組

          疫苗有效

          673

          x

          y

          疫苗無效

          77

          90

          z

          已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33.
          (1)求x的值;
          (2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,問應(yīng)在C組抽取多少個(gè)?
          (3)已知y≥465,z≥25,求不能通過測(cè)試的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為(
          A.y=﹣4sin(
          B.y=4sin(
          C.y=﹣4sin(
          D.y=4sin(

          查看答案和解析>>

          同步練習(xí)冊(cè)答案