日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知為橢圓上的三個(gè)點(diǎn)為坐標(biāo)原點(diǎn).

          (1)所在的直線方程為,求的長(zhǎng);

          (2)設(shè)為線段上一點(diǎn),且,當(dāng)中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.

          【答案】(1);(2)定值為

          【解析】

          試題(1)因?yàn)?/span>所在的直線方程為與橢圓方程相交所得的弦長(zhǎng).一般是通過(guò)聯(lián)立兩方程消去y,得到關(guān)于x的一元二次方程,可以解得兩個(gè)交點(diǎn)的坐標(biāo)的橫坐標(biāo)確定點(diǎn)的坐標(biāo),從而根據(jù)兩點(diǎn)的距離公式求出弦長(zhǎng).

          (2)直線與圓的位置關(guān)系,首先考慮直線的斜率是否存在,做好分類的工作.若當(dāng)斜率存在時(shí),通過(guò)聯(lián)立方程,應(yīng)用韋達(dá)定理知識(shí),求出弦長(zhǎng),利用點(diǎn)到直線的距離公式求出三角形的高的長(zhǎng).從而寫出三角形的面積(含斜率的等式).再根據(jù)的關(guān)系求出點(diǎn)P的坐標(biāo),帶到橢圓方程中,即可求出含斜率的一個(gè)等式,從而可得結(jié)論.

          試題解析:(1),

          解得

          所以兩點(diǎn)的坐標(biāo)為所以.

          (2)是橢圓的右頂點(diǎn)(左頂點(diǎn)一樣),則

          因?yàn)?/span>,在線段上,所以,求得,

          所以的面積等于.

          若B不是橢圓的左、右頂點(diǎn),設(shè),

          ,

          所以,的中點(diǎn)的坐標(biāo)為,

          所以,代入橢圓方程,化簡(jiǎn)得.

          計(jì)算.

          因?yàn)辄c(diǎn)的距離

          所以,的面積.

          綜上,面積為常數(shù).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在棱長(zhǎng)為1的正方體中,分別為棱的中點(diǎn).為面對(duì)角線上任一點(diǎn),則下列說(shuō)法正確的是(

          A.平面內(nèi)存在直線與平行

          B.平面截正方體所得截面面積為

          C.直線所成角可能為60°

          D.直線所成角可能為30°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,,.

          (1)證明:為等比數(shù)列,求出的通項(xiàng)公式;

          (2)若,求的前n項(xiàng)和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線過(guò)點(diǎn),且焦點(diǎn)為F,直線l與拋物線相交于A,B兩點(diǎn).

          ⑴求拋物線C的方程,并求其準(zhǔn)線方程;

          為坐標(biāo)原點(diǎn).,證明直線l必過(guò)一定點(diǎn),并求出該定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖一,在直角梯形中,分別為的三等分點(diǎn),, ,,若沿著折疊使得點(diǎn)重合,如圖二所示,連結(jié).

          1)求證:平面平面

          2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于曲線,給出下列四個(gè)結(jié)論:

          ①曲線C關(guān)于原點(diǎn)對(duì)稱,但不關(guān)于x軸、y軸對(duì)稱;

          ②曲線C恰好經(jīng)過(guò)4個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

          ③曲線C上任意一點(diǎn)都不在圓的內(nèi)部;

          ④曲線C上任意一點(diǎn)到原點(diǎn)的距離都不大于

          其中,正確結(jié)論的序號(hào)是________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.

          分組

          頻數(shù)

          頻率

          [10,15)

          10

          0.25

          [15,20)

          24

          n

          [20,25)

          m

          p

          [25,30]

          2

          0.05

          合計(jì)

          M

          1

          (1)求出表中M,p及圖中a的值;

          (2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

          (3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地某所高中 2019 年的高考考生人數(shù)是 2016 年高考考生人數(shù)的 1.5 倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校 2016 年和 2019年的高考升學(xué)情況,得到柱圖:

          2016年高考數(shù)據(jù)統(tǒng)計(jì) 2019年高考數(shù)據(jù)統(tǒng)計(jì)

          則下列結(jié)論正確的是(

          A.2016年相比,2019年一本達(dá)線人數(shù)有所增加

          B.2016年相比,2019年二本達(dá)線人數(shù)增加了0.5

          C.2016年相比,2019年藝體達(dá)線人數(shù)相同

          D.2016年相比,2019年不上線的人數(shù)有所增加

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.為左頂點(diǎn),過(guò)點(diǎn)的直線交橢圓,兩點(diǎn),直線,分別交直線,兩點(diǎn).

          1)求橢圓的方程;

          2)以線段為直徑的圓是否過(guò)定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案