日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系中,曲線的方程為,過點(diǎn)且斜率為的直線與曲線相切于點(diǎn)

          (1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和點(diǎn)的極坐標(biāo);

          (2)若點(diǎn)在曲線上,求面積的最大值.

          【答案】(1) ;點(diǎn)的極坐標(biāo)為.(2)

          【解析】

          (1)由得曲線的極坐標(biāo)方程為,即,結(jié)合圖象可求得的極徑和角,可得的極坐標(biāo);

          (2)不妨取,設(shè),根據(jù)面積公式以及三角函數(shù)的性質(zhì)可得最大值.

          解(1)由

          故曲線的極坐標(biāo)方程為,即,

          如圖:當(dāng)與圓相切時(shí),

          ,

          為等邊三角形,

          ,,

          ∴點(diǎn)的極坐標(biāo)為

          (2)由于圓、點(diǎn)、點(diǎn)均關(guān)于軸對(duì)稱,

          故不論點(diǎn)A在何處,都不會(huì)影響面積最大值的取得.

          不妨取,設(shè),

          ,

          ,

          ,

          ,

          ,即時(shí),面積取得最大值

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的多面體中,四邊形為菱形,且,的中點(diǎn).

          (1)求證:平面

          (2)若平面平面,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】十八屆五中全會(huì)首次提出了綠色發(fā)展理念,將綠色發(fā)展作為十三五乃至更長時(shí)期經(jīng)濟(jì)社會(huì)發(fā)展的一個(gè)重要理念.某地區(qū)踐行綠水青山就是金山銀山的綠色發(fā)展理念,2015年初至2019年初,該地區(qū)綠化面積y(單位:平方公里)的數(shù)據(jù)如下表:

          年份

          2015

          2016

          2017

          2018

          2019

          年份代號(hào)x

          1

          2

          3

          4

          5

          綠化面積y

          2.8

          3.5

          4.3

          4.7

          5.2

          1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

          2)利用(1)中的回歸方程,預(yù)測(cè)該地區(qū)2025年初的綠化面積.

          (參考公式:線性回歸方程:,為數(shù)據(jù)平均數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線,直線的斜率為2.

          (Ⅰ)若相切,求直線的方程;

          (Ⅱ)若相交于,,線段的中垂線交,,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計(jì)入考生總成績時(shí),將A至E等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.

          某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

          (Ⅰ)求物理原始成績?cè)趨^(qū)間(47,86)的人數(shù);

          (Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

          (附:若隨機(jī)變量,則,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若無窮數(shù)列滿足:,當(dāng)',時(shí), (其中表示,,…,中的最大項(xiàng)),有以下結(jié)論:

          若數(shù)列是常數(shù)列,則

          若數(shù)列是公差的等差數(shù)列,則

          若數(shù)列是公比為的等比數(shù)列,則

          若存在正整數(shù),對(duì)任意,都有,則,是數(shù)列的最大項(xiàng).

          其中正確結(jié)論的序號(hào)是____(寫出所有正確結(jié)論的序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.

          (1)若AB=,求CD的長;

          (2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前n項(xiàng)和是等差數(shù)列,且.

          )求數(shù)列的通項(xiàng)公式;

          )令.求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

          2)設(shè)函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn)

          i)求實(shí)數(shù)的取值范圍;

          (ⅱ)求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案