【題目】如圖,在四棱錐中,底面
是正方形,且
,平面
平面
,
,點
為線段
的中點,點
是線段
上的一個動點.
(Ⅰ)求證:平面平面
;
(Ⅱ)當點是線段
上的中點時,求二面角
的平面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ)
【解析】
(Ⅰ)推導出和
即可證明
平面
,再利用面面垂直判定即可
(Ⅱ)以,
,
所在直線分別為
軸,建立如圖所示空間直角坐標系
,求得兩個平面的法向量,再利用二面角向量公式求解
(Ⅰ)證明:∵四邊形是正方形,∴
.
∵平面平面
平面
平面
,∴
平面
.
∵平面
,∴
.
∵,點
為線段
的中點,∴
.
又∵,∴
平面
.
又∵平面
,∴平面
平面
.
(Ⅱ)由(Ⅰ)知平面
,
∵,∴
平面
.
∴,
又
,
∴,
,
兩兩垂直,以
為原點,
以,
,
所在直線分別為
軸,建立如圖所示空間直角坐標系
.
因為,∵
.
,
,
,
又為
的中點,
,
為
的中點,
,
,
設(shè)平面的法向量為
,則
,
∴,令
,則
,
∴,則
,
∵平面
,∴平面
的一個法向量
,
.
由圖知二面角的平面角為銳角,則二面角
的平面角的余弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】若定義域均為D的三個函數(shù)f(x),g(x),h(x)滿足條件:對任意x∈D,點(x,g(x)與點(x,h(x)都關(guān)于點(x,f(x)對稱,則稱h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實數(shù)b的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來就一直使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構(gòu)成了“干支紀年法”,其相配順序為:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子
癸未、甲申、乙酉、丙戌
癸巳
癸亥,60為一個周期,周而復始,循環(huán)記錄.按照“干支紀年法”,中華人民共和國成立的那年為己丑年,則2013年為( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,扇形的半徑為
,圓心角
,點
為弧
上一點,
平面
且
,點
且
,
∥平面
.
(1)求證:平面平面
;
(2)求平面和平面
所成二面角的正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是函數(shù)
定義域的一個子集,若存在
,使得
成立,則稱
是
的一個“準不動點”,也稱
在區(qū)間
上存在準不動點,已知
,
.
(1)若,求函數(shù)
的準不動點;
(2)若函數(shù)在區(qū)間
上存在準不動點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率
,橢圓C上的點到其左焦點的最大距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A作直線
與橢圓相交于點B,則
軸上是否存在點P,使得線段
,且
?若存在,求出點P坐標;否則請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線焦點
的直線與拋物線交于
(其中
點在
軸的上方)兩點.
(1)若線段的長為3,求
到直線
的距離;
(2)證明:為鈍角三角形;
(3)已知且
,求三角形
的面積
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com